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Overview

¢ Introduce nonlinear systems

¢ Define equilibria, linearization, stability in scalar systems
* Provide some canonical examples

Additional Reading;:

¢ Khalil, Chapter 1

* Sastry, Chapter 1

Linear Systems

We use the shorthand notation & =

&= Ax, x(ty) =z9 € R" (1) f(=) for Fa(t) = f(z(t)).

Here, A is an n X n constant matrix. This linear system has the fol-
lowing properties:

1. Solutions always exist, and are given in closed form

2(t) = eAltt) gy, ¢ > ¢

2. Solutions exist for all —co <t < o0
3. Solutions are unique
4. The set of equilibrium points is the nullspace of A (i.e., connected)

5. Periodic solutions are only marginally stable, never stable (asym-
potically or exponentially)

Nonlinear Systems

In comparison, nonlinear systems are more complex but also more
expressive. We will consider nonlinear systems of the form:

i = f(z), z(to) €R" ()
with f: R" — R™.

This system is time-invariant. We can also consider time-varying
systems:

i=f(z) f:R*"—R" time-invariant (autonomous)
&= f(t,z) f:RxR"™—R" time-varying (non-autonomous)
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When the system has a control input u € R™, the linear and nonlin-
ear system dynamics are:

t=Ar+Bu — &= f(z,u) (3)

Nonlinear System Analysis and Design

® Analysis (Exam 1): Determine stability, convergence, etc of © =

f(x)

* Design (Exam 2): Choose u as a function of « to achieve desired
behavior

* Modern Control (Final Project): Leverage optimization and com-
putational methods to design control techniques and ensure safety.

Motivating Scalar Example

Logistic growth model in population dynamics

izf(x)zr(l—%)x, r>0, K>0 4)

x > 0 denotes the population, K is called the carrying capacity, and
is the intrinsic growth rate.

For systems with a scalar state variable = € IR, stability can be deter-
mined from the sign of f(x) around the equilibrium. In this example
f(z)>0forz € (0,K), and f(z) < 0 for z > K; therefore

=0 unstable equilibrium
x = K asymptotically stable.

In general, = z* is an equilibrium for & = f(x) if f(z*) =0
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Sometimes the nonlinear system can be
written as @ = f(x) + g(z)u, which is

called control-affine form.

v




Linearization

Local stability properties of 2* can be determined by linearizing the
vector field f(z) at z*. These linearized dynamics are expressed in
terms of deviations from the equilibrium # = z — z*. The dynamics
of & are given by:

&£ f(a" +17) (5)

The linearization of these dynamics can be solved as before, using a
first-order Taylor series approximation:

fl"+7) = f(a¥) + of Z + higher order terms (6)
81: r=x*
=0
2 A

for ¥ = = — z* Thus, the linearized model is:

= Az (7)

If RA;(A) < 0 for each eigenvalue \; of A, then 2* is asymp. stable.

If ®\;(A4) > 0 for some eigenvalue \; of A, then z* is unstable.

Example: Logistic growth model above:

f(x)

f(0)>0 fI(K)<O0
unstable stable

Caveats:

1. Only local properties can be determined from the linearization.

Example: The logistic growth model linearized at x = 0 (¢ = rx)
would incorrectly predict unbounded growth of z(¢). In reality,
z(t) = K.

2. If R\;(A) < 0 with equality for some i, then linearization is incon-
clusive as a stability test. Higher order terms determine stability.
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Note this comes from the standard
first-order Taylor series approximation:
f(z) = f(z") + f'(z")(z — 2") and

substituting in x = «* + &
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Example: f(z) =23 vs. flz) = —a?

17(0) = 0 in each case, but one is stable and the other is unstable.

Motivating Example 2

Let’s consider the pendulum system with a frictional force resisting
the motion (coefficient of friction k):

¢mb = —kld —mgsin@ (8)
or

i— "Fo_9gne ©)
m l

Note: These dynamics can be derived from the Lagrangian:

£(0,0) = KE — PE

= %mézéz — mgl cos 6

with the equations of motion given via the Euler-Lagrange equations

(d’Alembert Principle): The damping torque acting on the
pendulum is -£(k¢0) for the planar
d (0L oL pendulum.
—_ —_— — —— = T
dt\o6) a0
d 24 o 24
= (mfz 9) T mglsing = —k(*0
ml?0 + mglsin @ = —k(%0
i+ Zsing = — g
¢ m

§= —Eé— 9 sin @
m V4

Define x = [ Z 1 State space: S! x R.

The system dynamics & can be rewritten in terms of this state as:

b 6 _ 0 N r2 (10)
g —%éf%sine B *%M*%Smxl
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Equilibria: (0,0) and (7, 0)

. (stable) at x1 =0
of _ l 0 1 -t -m
dr | —9cosz; —E

¢ " (unstable) at z1 = 7

S O
Nl

Phase portrait: plot of x1(¢) vs. z(t) for 2nd order systems

9.8 1 Figure 1: Phase portrait of the pendu-
lum for the undamped case k = 0 with
m=1,9g=98¢=1.
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