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Overview

• Introduce nonlinear systems

• Define equilibria, linearization, stability in scalar systems

• Provide some canonical examples

Additional Reading:

• Khalil, Chapter 1

• Sastry, Chapter 1

Linear Systems
We use the shorthand notation ẋ =
f (x) for d

dtx(t) = f (x(t)).ẋ = Ax, x(t0) = x0 ∈ Rn (1)

Here, A is an n× n constant matrix. This linear system has the fol-
lowing properties:

1. Solutions always exist, and are given in closed form

x(t) = eA(t−t0)x0, t ≥ t0

2. Solutions exist for all −∞ < t < ∞

3. Solutions are unique

4. The set of equilibrium points is the nullspace of A (i.e., connected)

5. Periodic solutions are only marginally stable, never stable (asym-
potically or exponentially)

Nonlinear Systems

In comparison, nonlinear systems are more complex but also more
expressive. We will consider nonlinear systems of the form:

ẋ = f(x), x(t0) ∈ Rn (2)

with f : Rn → Rn.

This system is time-invariant. We can also consider time-varying
systems:

ẋ = f(x) f : Rn → Rn time-invariant (autonomous)
ẋ = f(t,x) f : R × Rn → Rn time-varying (non-autonomous)
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When the system has a control input u ∈ Rm, the linear and nonlin-
ear system dynamics are: Sometimes the nonlinear system can be

written as ẋ = f (x) + g(x)u, which is
called control-affine form.ẋ = Ax+Bu −→ ẋ = f(x,u) (3)

Nonlinear System Analysis and Design

• Analysis (Exam 1): Determine stability, convergence, etc of ẋ =

f(x)

• Design (Exam 2): Choose u as a function of x to achieve desired
behavior

• Modern Control (Final Project): Leverage optimization and com-
putational methods to design control techniques and ensure safety.

Motivating Scalar Example

Logistic growth model in population dynamics

ẋ = f(x) = r
(

1 − x

K

)
︸ ︷︷ ︸

growth rate

x, r > 0, K > 0 (4)

x > 0 denotes the population, K is called the carrying capacity, and r

is the intrinsic growth rate.
x

x

r

K

f (x)

For systems with a scalar state variable x ∈ R, stability can be deter-
mined from the sign of f(x) around the equilibrium. In this example
f(x) > 0 for x ∈ (0,K), and f(x) < 0 for x > K; therefore

x = 0 unstable equilibrium
x = K asymptotically stable.

In general, x = x∗ is an equilibrium for ẋ = f(x) if f(x∗) = 0



ece 6552 – lecture 1 3

Linearization

Local stability properties of x∗ can be determined by linearizing the
vector field f(x) at x∗. These linearized dynamics are expressed in
terms of deviations from the equilibrium x̃ = x− x∗. The dynamics
of x̃ are given by:

˙̃x ≜ f(x∗ + x̃) (5)

The linearization of these dynamics can be solved as before, using a
first-order Taylor series approximation: Note this comes from the standard

first-order Taylor series approximation:
f (x) ≈ f (x∗) + f ′(x∗)(x− x∗) and
substituting in x = x⋆ + x̃f(x∗ + x̃) = f(x∗)︸ ︷︷ ︸

= 0

+
∂f

∂x

∣∣∣∣
x=x∗︸ ︷︷ ︸

≜ A

x̃+ higher order terms (6)

for x̃ = x− x∗ Thus, the linearized model is:

˙̃x = Ax̃. (7)

If ℜλi(A) < 0 for each eigenvalue λi of A, then x∗ is asymp. stable.

If ℜλi(A) > 0 for some eigenvalue λi of A, then x∗ is unstable.

Example: Logistic growth model above:

f ′(0) > 0
unstable

f ′(K) < 0
stable

f(x)

x

Caveats:

1. Only local properties can be determined from the linearization.

Example: The logistic growth model linearized at x = 0 (ẋ = rx)
would incorrectly predict unbounded growth of x(t). In reality,
x(t) → K.

2. If ℜλi(A) ≤ 0 with equality for some i, then linearization is incon-
clusive as a stability test. Higher order terms determine stability.
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Example: f(x) = x3 vs. f(x) = −x3

xx

f ′(0) = 0 in each case, but one is stable and the other is unstable.

Motivating Example 2

Let’s consider the pendulum system with a frictional force resisting
the motion (coefficient of friction k):

ℓmθ̈ = −kℓθ̇−mg sin θ (8)

or
θ̈ =

−k

m
θ̇− g

l
sin θ (9)

θ

ℓ

mg

mg sin θ

Note: These dynamics can be derived from the Lagrangian:

L(θ, θ̇) = KE − PE

=
1
2
mℓ2θ̇2 −mgℓ cos θ

with the equations of motion given via the Euler-Lagrange equations
(d’Alembert Principle): The damping torque acting on the

pendulum is -ℓ(kℓθ) for the planar
pendulum.d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= τext

d

dt

(
mℓ2θ̇

)
+mgℓ sin θ = −kℓ2θ̇

mℓ2θ̈+mgℓ sin θ = −kℓ2θ̇

θ̈+
g

ℓ
sin θ = − k

m
θ̇

θ̈ = − k

m
θ̇− g

ℓ
sin θ

Define x =

[
θ

θ̇

]
. State space: S1 × R.

The system dynamics ẋ can be rewritten in terms of this state as:

ẋ =

[
θ̇

θ̈

]
=

[
θ̇

− k
m θ̇− g

ℓ sin θ

]
=

[
x2

− k
mx2 − g

ℓ sinx1

]
(10)
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Equilibria: (0, 0) and (π, 0)

∂f

∂x
=

[
0 1

− g
ℓ cosx1 − k

m

]
=



 0 1

− g
ℓ − k

m

 (stable) at x1 = 0 0 1
g
ℓ − k

m

 (unstable) at x1 = π

Phase portrait: plot of x1(t) vs. x2(t) for 2nd order systems

2 0 2
x1 =

9.8

0.0

9.8

x 2
=

Figure 1: Phase portrait of the pendu-
lum for the undamped case k = 0 with
m = 1, g = 9.8, ℓ = 1.
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