ME 6402 — Lecture 9 *
LASALLE-KRASOVSKII INVARIANCE PRINCIPLE

February 4 2025

Overview:

* LaSalle-Krasovskii Invariance Principle, applicable when V' (z) < 0.
* Lyapunov functions for linear systems

Additional Reading:

e Khalil, Chapter 4.2-4.3

Recall

Recall from the end of Lecture 8 the following example:

1 = a2

iy = —ary —g(x1) a >0, zg(xr) >0 Ve € (~=b,c)— {0}

We considered the candidate Lyapunov function:

73

V(z) = /Oxl g(y)dy + %

which resulted in the derivative condition on the interval D =

(=b,¢) = {0}:

V(z) = —ax3

Since V() is negative semidefinite = stable.

If @ = 0, no asymptotic stability because V(z) = 0 = V(z(t)) =

V (z(0)).
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"conservative system"

* Based on notes created by Murat
Arcak and licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

The pendulum is a special case with
g(z) = sin(z).
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If a > 0, the system is asymptotically stable but the Lyapunov func-
tion above doesn’t allow us to reach that conclusion. This is because
V(z) = 0 on the line 2, = 0. We need either another V with negative
definite V, or the Lasalle-Krasovskii Invariance Principle.

LaSalle-Krasouvskii Invariance Principle

e Applicable to time-invariant systems.

* Allows us to conclude asymptotic stability from V(z) < 0 if
additional conditions hold.

Let O C D be a compact
set that is positively invariant with respect to the system & = f(x). Let
V : D — R be a continuously differentiable function such that V(z) < 0
in Q. Let E be the set of all points in Q) where V (z) = 0. Let M be the
largest invariant set in E. Then every solution starting in () approaches M
ast — oo,
Corollary: Lasalle-Krasovskii Invariance Principle®. Let z = 0 be an 2 Also known as the theorems of Bar-

bashin and Krasovskii, who proved

. . L L. . . L. it before the introduction of LaSalle’s
ously differentiable positive definite function on a domain D containing the invariance principle

origin x = 0, such that V() < 0in D. Let S = {z € D | V(z) = 0}
and suppose that no solution can stay identically in S, other than the trivial

equilibrium point for the system i = f(x). Let V : D — R be a continu-

solution x(t) = 0. Then, the origin is asymptotically stable.

* Note: practically, the set D is often selected to be the level set
Q¢ = {z : V(2) < ¢} which is bounded such that V(z) < 0 in Q..
Then, we define S = {z € Q. : V(z) = 0} and let M be the largest
invariant set in S. Then, for every z(0) € Q., z(t) — M.

e If no solution other than z(¢) = 0 can stay identically in S then
M = {0} and we conclude asymptotic stability.

Corollary: Lasalle-Krasovskii Invariance Principle for Globally
Asymptotic Stability. Let x = 0 be an equilibrium point for the sys-

tem & = f(x). Let V : R"™ — R be a continuously differentiable, radially
unbounded, positive definite function such that V(z) < 0 for all x € R™.
Let S = {z € R™ | V(x) = 0} and suppose that no solution can stay
identically in S, other than the trivial solution x(t) = 0. Then, the origin is
globally asymptotically stable.

Example (continued from before):

(kl =T ( )
1
i‘z = —axrpy — g(l‘l) a > 0, xg(x) >0 Vzx ;ﬁ 0

2
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T 1 .
V)= [y + 353 = V()= —as}
S ={z € Qclz, =0}

If z(t) stays identically in S, then 5 (t) = 0 = @, (t) = 0 =
g(z1(t)) = 0 = 21(t) = 0 = asymptotic stability from Corollary.

Example (linear system): Same system above with g(z1) = bxy:

= B

Tp = —axy—br;y a>0,6>0

V(z) = 322 + 123 = V(2) = —az3 = Invariance Principle works
as in the example above.

Alternatively, construct another Lyapunov function with negative
definite V(). Try V(z) = 27 Pz where P = PT > 0 is to be selected.

0 1
b —a

Then, if we select P to satisfy PA + ATP = —Q for some positive

V(z) = 2T Pi+ Pz = 27 (ATP + PA)x where A =

definite symmetric matrix Q) = QT > 0, then

Viz)=—-2TQz <0
and we can conclude that the origin is asymptotically stable.

This method uses what’s known as the Lyapunov Equation, we will
explore this further next.

Linear Systems
Sastry (Sec. 5.7-5.8), Khalil (Sec. 4.3)
The linear time-invariant system

i=Ar ze€R" (3)

has an equilibrium point at the origin (z = 0). From linear system
theory, we know that the equilibrium point is stable if and only if
R{N\(A)} <Oforalli =1,---,n and eigenvalues on the imaginary

3

axis have Jordan blocks of order one.3 3ie., if A is an eigenvalue of multiplicity

q then A\I — A must have rank n — q.
Example: This is Theorem 4.5 in Khalil

0 1
00

A:

1 = A2 =0, rank(A\] — A) =1 = unstable

00
0 0

A=

‘| = M2 =0, rank(A\] — A) =0 = stable
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When all eigenvalues of A satisfy JtA; < 0, A is said to be Hurwitz.
The origin is asymptotically stable if and only if A is Hurwitz.

As alluded to before, asymptotic stability of the origin can also be
investigated using Lyapunov’s method.

Lyapunov Functions for Linear Systems

Vig)=a2'Pz P=PT>0
V(z) =21 (ATP+ PA)x

If 3P = PT > 0 such that ATP + PA = —Q < 0, then A is Hurwitz.
The converse is also true:

(4)

Theorem: A is Hurwitz if and only if for any @ = QT > 0, there
exists P = PT > 0 such that

ATP+PA=—Q. (5)
Moreover, the solution P is unique. (5) is known as the Lyapunov Equation.
The Matlab command lyap(A’,Q)
Proof: returns the solution P.
(if) From (4) above, the Lyapunov function V(z) = zT Pz proves
asymptotic stability which means A is Hurwitz.
(only if) Assume R{\;(A)} < 0Vi. Show 3P = PT > 0 such that
ATP 4+ PA=—Q.
Candidate: o
pP= / eATthAtdt. (6)
0
* The integral exists because the integrand is a sum of terms# of the 4This comes from the Jordan form
form t*=1exp(\;t), where R); < 0. So |le?|| < ket J = P~LAP which leads to:
« p_pT exp(At) = Ijexz(.]t)P_l
) = 2 2 th-1 exp(Ait)Rik
e P >0because z! Pr = / ()T Q(eAtz)dt > 0 and =1k=1
0

. with r being the number of Jordan
=o(tx) blocks, and m; being the order of the

TPz =0 = ¢(t,r) =0 = 2 = 0 because e¢*! is nonsingular. Jordan block J;.

e ATP +PA = / (ATeATthAt+eATthAtA>dt
0

_ %(EATthAt)

Uniqueness:

Suppose there is another P = P7 > 0 satisfying P # P, and
ATP+ PA=—Q.



= (P-P)A+AT(P-P)=0

Define W (z) = 2T (P — P)x
%Wmm:wﬁwmm:wu@)w

Since A is Hurwitz, z(¢t) — 0 and W (z(t)) — 0.

Combining the two statements above, we conclude W (z(0)) = 0 for

any z(0). This is possible only if P — P = 0 which contradicts P # P.

Invariance Principle Applied to Linear Systems

Similar to the nonlinear case, we can relax the positive definiteness
requirement on () for proving asymptotic stability of linear systems.
Le., the Lyapunov equation can be satisfied for:

ATP4+PA=-Q<0
In other words, we conclude that A is Hurwitz if ) is only semidefi-
nite?

Sketch Proof: Decompose ) as @ = CTC where C € R™*", r is the
rank of Q).
V(z) = —2TQu = —2TCTCr = —yTy

where y £ Cz. The invariance principle guarantees asymptotic
stability if

y(t) =Cz(t) =0 = =z(t) =0.
This implication is true if the pair (C, A) is observable> since observ-

ability implies that the only state « that produces identically zero
output y(¢) for all time is z = 0.

Example (beginning of the lecture):

&1 =22

Tp = —axy—br; a>0,6>0

Which can be rewritten in the form:
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5 A pair (C, A) is observable if the
observability matrix

C
CA

2
o_ | ca

CAn—l
has full rank, i.e., rank(O) = n.

5
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then () is positive semidefinite. However, we can use the invariance
principle above by selecting C' satisfying CTC' = Q:

c=lo val
and observing that (C, A) is observable if b # 0:

c
CA

O:

\(}61) \/\/&aa] = rank(O0) =2if b #0

Solving the Lyapunov Equation

Assume we are given the system & = Ax with
0 1
-1 -1

Assume we are asked to solve the Lyapunov equation with @ = I.

A:

One method of solving the Lyapunov equation is to rearrange it in
the form Mz = y with x and y defined by stacking the elements of P
and Q.

Let

P =
P12 P22

P11 p12‘|

The Lyapunov equation AT P + PA = —Q can be written as

0 1] |pn pi2 4| P2 0 -1 _ |10
-1 1| |p12 p2 P2 p2| |1 —1] 01
D12 P22 4Pz TPup| -1 0
—p11 — P12 —P12 — D2 P2 —P12 — P2 0 -1
2p12 —pun—pr2tpnl _ |-1 0
—pu—P2tp2 —2p12—2pn | 0 -1
Putting this all together:
0 2 0 P11 -1
-1 -1 1 P12 = 0
0 -2 2| |pn 1
This yields the solution
1.5
ol I i I I PR
L I ~|-05 10
P22 10

6
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