

# ME 6402 – Lecture 9 <sup>1</sup>

## LASALLE-KRASOVSKII INVARIANCE PRINCIPLE

February 4 2025

<sup>1</sup> Based on notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Overview:

- LaSalle-Krasovskii Invariance Principle, applicable when  $\dot{V}(x) \leq 0$ .
- Lyapunov functions for linear systems

Additional Reading:

- Khalil, Chapter 4.2-4.3

*Recall*

Recall from the end of Lecture 8 the following example:

$$\begin{aligned}\dot{x}_1 &= x_2 \\ \dot{x}_2 &= -ax_2 - g(x_1) \quad a \geq 0, \quad xg(x) > 0 \quad \forall x \in (-b, c) - \{0\}\end{aligned}$$

We considered the candidate Lyapunov function:

$$V(x) = \int_0^{x_1} g(y)dy + \frac{1}{2}x_2^2$$

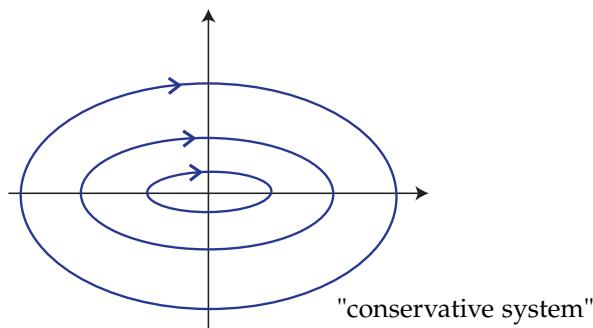
which resulted in the derivative condition on the interval  $D = (-b, c) - \{0\}$ :

$$\dot{V}(x) = -ax_2^2$$

The pendulum is a special case with  $g(x) = \sin(x)$ .

Since  $\dot{V}(x)$  is negative semidefinite  $\Rightarrow$  stable.

If  $a = 0$ , no asymptotic stability because  $\dot{V}(x) = 0 \Rightarrow V(x(t)) = V(x(0))$ .



If  $a > 0$ , the system is asymptotically stable but the Lyapunov function above doesn't allow us to reach that conclusion. This is because  $\dot{V}(x) = 0$  on the line  $x_2 = 0$ . We need either another  $V$  with negative definite  $\dot{V}$ , or the LaSalle-Krasovskii Invariance Principle.

### LaSalle-Krasovskii Invariance Principle

- Applicable to time-invariant systems.
- Allows us to conclude asymptotic stability from  $\dot{V}(x) \leq 0$  if additional conditions hold.

**Theorem: LaSalle Invariance Principle.** *Let  $\Omega \subset D$  be a compact set that is positively invariant with respect to the system  $\dot{x} = f(x)$ . Let  $V : D \rightarrow \mathbb{R}$  be a continuously differentiable function such that  $\dot{V}(x) \leq 0$  in  $\Omega$ . Let  $E$  be the set of all points in  $\Omega$  where  $\dot{V}(x) = 0$ . Let  $M$  be the largest invariant set in  $E$ . Then every solution starting in  $\Omega$  approaches  $M$  as  $t \rightarrow \infty$ .*

**Corollary: Lasalle-Krasovskii Invariance Principle<sup>2</sup>.** *Let  $x = 0$  be an equilibrium point for the system  $\dot{x} = f(x)$ . Let  $V : D \rightarrow \mathbb{R}$  be a continuously differentiable positive definite function on a domain  $D$  containing the origin  $x = 0$ , such that  $\dot{V}(x) \leq 0$  in  $D$ . Let  $S = \{x \in D \mid \dot{V}(x) = 0\}$  and suppose that no solution can stay identically in  $S$ , other than the trivial solution  $x(t) \equiv 0$ . Then, the origin is **asymptotically stable**.*

- Note: practically, the set  $D$  is often selected to be the level set  $\Omega_c = \{x : V(x) \leq c\}$  which is bounded such that  $\dot{V}(x) \leq 0$  in  $\Omega_c$ . Then, we define  $S = \{x \in \Omega_c : \dot{V}(x) = 0\}$  and let  $M$  be the largest invariant set in  $S$ . Then, for every  $x(0) \in \Omega_c$ ,  $x(t) \rightarrow M$ .
- If no solution other than  $x(t) \equiv 0$  can stay identically in  $S$  then  $M = \{0\}$  and we conclude asymptotic stability.

<sup>2</sup> Also known as the theorems of Barbashin and Krasovskii, who proved it before the introduction of LaSalle's invariance principle

**Corollary: Lasalle-Krasovskii Invariance Principle for Globally Asymptotic Stability.** *Let  $x = 0$  be an equilibrium point for the system  $\dot{x} = f(x)$ . Let  $V : \mathbb{R}^n \rightarrow \mathbb{R}$  be a continuously differentiable, radially unbounded, positive definite function such that  $\dot{V}(x) \leq 0$  for all  $x \in \mathbb{R}^n$ . Let  $S = \{x \in \mathbb{R}^n \mid \dot{V}(x) = 0\}$  and suppose that no solution can stay identically in  $S$ , other than the trivial solution  $x(t) \equiv 0$ . Then, the origin is **globally asymptotically stable**.*

Example (continued from before):

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -ax_2 - g(x_1) \quad a > 0, \quad xg(x) > 0 \quad \forall x \neq 0 \end{aligned} \tag{1}$$

$$V(x) = \int_0^{x_1} g(y)dy + \frac{1}{2}x_2^2 \implies \dot{V}(x) = -ax_2^2$$

$$S = \{x \in \Omega_c | x_2 = 0\}$$

If  $x(t)$  stays identically in  $S$ , then  $x_2(t) \equiv 0 \implies \dot{x}_2(t) \equiv 0 \implies g(x_1(t)) \equiv 0 \implies x_1(t) \equiv 0 \implies$  asymptotic stability from Corollary.

Example (linear system): Same system above with  $g(x_1) = bx_1$ :

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -ax_2 - bx_1 \quad a > 0, b > 0 \end{aligned} \tag{2}$$

$V(x) = \frac{b}{2}x_1^2 + \frac{1}{2}x_2^2 \implies \dot{V}(x) = -ax_2^2 \implies$  Invariance Principle works as in the example above.

Alternatively, construct another Lyapunov function with negative definite  $\dot{V}(x)$ . Try  $V(x) = x^T Px$  where  $P = P^T > 0$  is to be selected.

$$\dot{V}(x) = x^T P \dot{x} + \dot{P}x = x^T (A^T P + PA)x \text{ where } A = \begin{bmatrix} 0 & 1 \\ -b & -a \end{bmatrix}$$

Then, if we select  $P$  to satisfy  $PA + A^T P = -Q$  for some positive definite symmetric matrix  $Q = Q^T > 0$ , then

$$\dot{V}(x) = -x^T Q x < 0$$

and we can conclude that the origin is asymptotically stable.

This method uses what's known as the *Lyapunov Equation*, we will explore this further next.

## Linear Systems

Sastry (Sec. 5.7-5.8), Khalil (Sec. 4.3)

The linear time-invariant system

$$\dot{x} = Ax \quad x \in \mathbb{R}^n \tag{3}$$

has an equilibrium point at the origin ( $x = 0$ ). From linear system theory, we know that the equilibrium point is **stable** if and only if  $\Re\{\lambda_i(A)\} \leq 0$  for all  $i = 1, \dots, n$  and eigenvalues on the imaginary axis have Jordan blocks of order one.<sup>3</sup>

Example:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \implies \lambda_{1,2} = 0, \text{rank}(\lambda I - A) = 1 \implies \text{unstable}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \implies \lambda_{1,2} = 0, \text{rank}(\lambda I - A) = 0 \implies \text{stable}$$

<sup>3</sup> i.e., if  $\lambda$  is an eigenvalue of multiplicity  $q$  then  $\lambda I - A$  must have rank  $n - q$ .  
This is Theorem 4.5 in Khalil

When all eigenvalues of  $A$  satisfy  $\Re \lambda_i < 0$ ,  $A$  is said to be *Hurwitz*. The origin is **asymptotically stable** if and only if  $A$  is Hurwitz.

As alluded to before, asymptotic stability of the origin can also be investigated using Lyapunov's method.

### Lyapunov Functions for Linear Systems

$$\begin{aligned} V(x) &= x^T P x & P = P^T > 0 \\ \dot{V}(x) &= x^T (A^T P + P A) x \end{aligned} \quad (4)$$

If  $\exists P = P^T > 0$  such that  $A^T P + P A = -Q < 0$ , then  $A$  is Hurwitz.

The converse is also true:

**Theorem:**  $A$  is Hurwitz if and only if for any  $Q = Q^T > 0$ , there exists  $P = P^T > 0$  such that

$$A^T P + P A = -Q. \quad (5)$$

Moreover, the solution  $P$  is unique.

**Proof:**

(if) From (4) above, the Lyapunov function  $V(x) = x^T P x$  proves asymptotic stability which means  $A$  is Hurwitz.

(only if) Assume  $\Re \{\lambda_i(A)\} < 0 \ \forall i$ . Show  $\exists P = P^T > 0$  such that  $A^T P + P A = -Q$ .

Candidate:

$$P = \int_0^\infty e^{A^T t} Q e^{At} dt. \quad (6)$$

- The integral exists because the integrand is a sum of terms<sup>4</sup> of the form  $t^{k-1} \exp(\lambda_i t)$ , where  $\Re \lambda_i < 0$ . So  $\|e^{At}\| \leq \kappa e^{-\alpha t}$ .
- $P = P^T$

- $P > 0$  because  $x^T P x = \int_0^\infty (e^{At} x)^T Q \underbrace{(e^{At} x)}_{\triangleq \phi(t,x)} dt \geq 0$  and

$$x^T P x = 0 \implies \phi(t, x) \equiv 0 \implies x = 0 \text{ because } e^{At} \text{ is nonsingular.}$$

$$\begin{aligned} \bullet \quad A^T P + P A &= \int_0^\infty \underbrace{\left( A^T e^{A^T t} Q e^{At} + e^{A^T t} Q e^{At} A \right)}_{= \frac{d}{dt} \left( e^{A^T t} Q e^{At} \right)} dt \\ &= e^{A^T t} Q e^{At} \Big|_0^\infty = 0 - Q = -Q \end{aligned}$$

Uniqueness:

Suppose there is another  $\hat{P} = \hat{P}^T > 0$  satisfying  $\hat{P} \neq P$ , and  $A^T \hat{P} + \hat{P} A = -Q$ .

(5) is known as the Lyapunov Equation. The Matlab command `lyap(A', Q)` returns the solution  $P$ .

<sup>4</sup> This comes from the Jordan form  $J = P^{-1} A P$  which leads to:

$$\begin{aligned} \exp(At) &= P \exp(Jt) P^{-1} \\ &= \sum_{i=1}^r \sum_{k=1}^{m_i} t^{k-1} \exp(\lambda_i t) R_{ik} \end{aligned}$$

with  $r$  being the number of Jordan blocks, and  $m_i$  being the order of the Jordan block  $J_i$ .

$$\implies (P - \hat{P})A + A^T(P - \hat{P}) = 0$$

Define  $W(x) = x^T(P - \hat{P})x$ .

$$\frac{d}{dt}W(x(t)) = 0 \implies W(x(t)) = W(x(0)) \quad \forall t.$$

Since  $A$  is Hurwitz,  $x(t) \rightarrow 0$  and  $W(x(t)) \rightarrow 0$ .

Combining the two statements above, we conclude  $W(x(0)) = 0$  for any  $x(0)$ . This is possible only if  $P - \hat{P} = 0$  which contradicts  $\hat{P} \neq P$ .

### Invariance Principle Applied to Linear Systems

Similar to the nonlinear case, we can relax the positive definiteness requirement on  $Q$  for proving asymptotic stability of linear systems. I.e., the Lyapunov equation can be satisfied for:

$$A^T P + P A = -Q \leq 0$$

In other words, we conclude that  $A$  is Hurwitz if  $Q$  is only semidefinite?

Sketch Proof: Decompose  $Q$  as  $Q = C^T C$  where  $C \in \mathbb{R}^{r \times n}$ ,  $r$  is the rank of  $Q$ .

$$\dot{V}(x) = -x^T Q x = -x^T C^T C x = -y^T y$$

where  $y \triangleq Cx$ . The invariance principle guarantees asymptotic stability if

$$y(t) = Cx(t) \equiv 0 \implies x(t) \equiv 0.$$

This implication is true if the pair  $(C, A)$  is observable<sup>5</sup> since observability implies that the only state  $x$  that produces identically zero output  $y(t)$  for all time is  $x \equiv 0$ .

Example (beginning of the lecture):

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -ax_2 - bx_1 \quad a > 0, b > 0 \end{aligned}$$

Which can be rewritten in the form:

$$\dot{x} = \underbrace{\begin{bmatrix} 0 & 1 \\ -b & -a \end{bmatrix}}_A x$$

If we selected the  $Q$  matrix

$$Q = \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix},$$

<sup>5</sup> A pair  $(C, A)$  is observable if the observability matrix

$$\mathcal{O} = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

has full rank, i.e.,  $\text{rank}(\mathcal{O}) = n$ .

then  $Q$  is positive semidefinite. However, we can use the invariance principle above by selecting  $C$  satisfying  $C^T C = Q$ :

$$C = \begin{bmatrix} 0 & \sqrt{a} \end{bmatrix}$$

and observing that  $(C, A)$  is observable if  $b \neq 0$ :

$$\mathcal{O} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 0 & \sqrt{a} \\ -\sqrt{ab} & -\sqrt{aa} \end{bmatrix} \implies \text{rank}(\mathcal{O}) = 2 \text{ if } b \neq 0$$

### Solving the Lyapunov Equation

Assume we are given the system  $\dot{x} = Ax$  with

$$A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$

Assume we are asked to solve the Lyapunov equation with  $Q = I$ . One method of solving the Lyapunov equation is to rearrange it in the form  $Mx = y$  with  $x$  and  $y$  defined by stacking the elements of  $P$  and  $Q$ .

Let

$$P = \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix}$$

The Lyapunov equation  $A^T P + PA = -Q$  can be written as

$$\begin{aligned} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} + \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} &= - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ \begin{bmatrix} p_{12} & p_{22} \\ -p_{11} - p_{12} & -p_{12} - p_{22} \end{bmatrix} + \begin{bmatrix} p_{12} & -p_{11} - p_{12} \\ p_{22} & -p_{12} - p_{22} \end{bmatrix} &= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \\ \begin{bmatrix} 2p_{12} & -p_{11} - p_{12} + p_{22} \\ -p_{11} - p_{12} + p_{22} & -2p_{12} - 2p_{22} \end{bmatrix} &= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \end{aligned}$$

Putting this all together:

$$\begin{bmatrix} 0 & 2 & 0 \\ -1 & -1 & 1 \\ 0 & -2 & -2 \end{bmatrix} \begin{bmatrix} p_{11} \\ p_{12} \\ p_{22} \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}$$

This yields the solution

$$\begin{bmatrix} p_{11} \\ p_{12} \\ p_{22} \end{bmatrix} = \begin{bmatrix} 1.5 \\ -0.5 \\ 1.0 \end{bmatrix} \Rightarrow P = \begin{bmatrix} 1.5 & -0.5 \\ -0.5 & 1.0 \end{bmatrix}$$