ME 6402 — Lecture 7*
MATHEMATICAL BACKGROUND

January 28 2025

Overview:

¢ Existence and Uniqueness of ODEs
¢ Lipschitz continuity

* Normed linear spaces

¢ Fixed point theorems

¢ Contraction mappings

Additional Reading;:

¢ Sastry, Chapter 3

¢ Khalil, Chapter 3 and Appendix B

Clarification

A k-dimensional manifold in R™ (1 < k < n) is informally the
solution to

n(z) =0
with  : R — Rk sufficiently smooth. Last class, we said that
2 = h(y) is a center manifold for the transformed system y € R¥ and

z € R"*, characterized as the solution to w(z) £ z(z) — h(y(x)) = 0.

Informally, we are constraining z € R”~* which allows us to only
consider the dynamics of y € R¥.

Example:
The unit circle:

{z € R?s.t. n(z) 2 22+ 23 —1=0}

is a one-dimensional manifold in R2.
The unit sphere:

{xE]R”s.t.n(x)éi 2_1=0}

(]

1=1

is a n — 1 dimensional manifold in R™.

Mathematical Background

&= f(z) z(0) == (1)

Do solutions exist? Are they unique?

* Based on notes created by Murat
Arcak and licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

Sastry, Chapter 3
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e If f(-) is continuous (C?) then a solution exists, but C? is not suffi-

cient for uniqueness.

Example: & = 3 with z(0) =0

oo slope
atz=0

¢ Sufficient condition for uniqueness: “Lipschitz continuity” (more
restrictive than C?)

[f(z) = f(y)| < Lz —y| (@)

Definition: f(-) is locally Lipschitz if every point 2 has a neighbor-
hood where (2) holds for all z,y in this neighborhood for some L.

Example: ()% is NOT locally Lipschitz (due to oo slope)
(+)3 is locally Lipschitz:

Py’ = (@ +ay+y?) (z—y)
in any nbhd
of 29, we can
find L to upper
bound this
— 27 =’ < Llz —y|

e If f(-) is continuously differentiable (C?), then it is locally Lips-
chitz.

3 22, e%, etc.

Examples: z
The converse is not true: local Lipschitz # C*
Example: A

1f---- sat(x)
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Not differentiable at + = F1, but locally Lipschitz:

|sat(z) —sat(y)| <[z —y[  (L=1).

1/3

Definition continued: f(-) is globally Lipschitz if (2) holds Vz,y € R™
(i.e., the same L works everywhere).

Examples: sat(-) is globally Lipschitz. (-)3 is not globally Lipschitz:

A

— slope getting steeper

/ > T
of
0

* Suppose f(-) is C1. Then it is globally Lipschitz iff 3 is bounded.

T

L = sup |f'(z)]
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Preview of existence theorems:

1. f(+)is C° = existence of solution z(t) on finite interval [0,¢).
2. f(-) locally Lipschitz == existence and uniqueness on [0, ).

3. f(+) globally Lipschitz = existence and uniqueness on [0, ).

Examples:

o @ = 2? (locally Lipschitz) admits unique solution on [0, ), but
ty < oo from Lecture 1 (finite escape).

e & = Ax globally Lipschitz, therefore no finite escape
Av— Ayl < Llz—y| with L=||A]

The rest of the lecture introduces concepts that are used in proving the
existence theorems mentioned above.

Normed Linear Spaces

Definition: X is a normed linear space if there exists a real-valued
norm | - | satisfying:

1. |z| >0 Vz €X, |z|=0iff z =0.

2. |z +y| <|z|+|y| Vz,y € X (triangle inequality)

3. |az| =|a|-|z| Ya € Rand z € X.
Definition: A sequence {z;} in X is said to be a Cauchy sequence if

|zg — zm| — 0 as k,m — ooc. (3)

Every convergent sequence is Cauchy. The converse is not true.

Definition: X is a Banach space if every Cauchy sequence converges
to an element in X.

All Euclidean spaces are Banach spaces.
Example:

C"™[a, b]: the set of all continuous functions [a, b] — IR™ with norm:

|zl = max [z(t)]
tela,b]

1. |z|c > 0and |z|c = 0iff () = 0.
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2. |z +yle = max [z(t) +y(t)] < max {|z(t)] +[y(t)[} < |zlc + lylc
te(a,b] tela,b]

3. |la-zlo = max] laf - [2(t)] = |a| - [z|c

tefa,b

It can be shown that C™[a, b] is a Banach space.

Fixed Point Theorems

T(x) =« @

Brouwer’s Theorem (Euclidean spaces):

If U is a closed, bounded, convex subset of a Euclidean space and
T :U — U is continuous, then 7" has a fixed point in U.

Schauder’s Theorem (Brouwer’s Thm — Banach spaces):

If U is a closed bounded convex subset of a Banach space X and

T :U — U is completely continuous®, then T has a fixed point in U. 2 continuous and for any bounded set
) ) B C U the closure of T'(B) is compact
Contraction Mapping Theorem:

If U is a closed subset of a Banach space and 7': U — U is such that
T(z) —T(y)| <plz—y|l p<1 Vz,yelU

then 7" has a unique fixed point in U and the solutions of z,, 1 =

T (zp) converge to this fixed point from any z € U.

Example: The logistic map (Lecture 5)
T(z)=rz(l—2x) (5)

with0 <r <4mapsU = [0,1] to U. |T'(z)| < r Vz € [0,1], so the
contraction property holds with p = 7.

r/4

If » < 1, the contraction mapping theorem predicts a unique fixed
point that attracts all solutions starting in [0, 1].
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Proof steps for the Contraction Mapping Thm:

1. Show that {z,} formed by z,,.1 = T'(z) is a Cauchy sequence.
Since we are in a Banach space, this implies a limit z* exists.

2. Show that z* = T'(z*).

3. Show that z* is unique.

Details of each step:

1. [Tni1 = @n| = |T(2n) = T(2n1)] < plon — 20

< p2|xn—1 - $n72|

< p"|w1 — wol-

Tn4r — l'n‘ < |1'n+r - $n+r71| ++ |xn+1 - mTL|
< (P4 M) e — o
=p"(1+-+p")|z1 — 20|

<p" |21 — @0

1—p
Since % — 0 as n — oo, we have |T,1r — 2| — 0 as n — co.
2. |z* = T(z")| = |2 —xp + T(xp_1) — T(z")]
< ot = an| + [T (2n1) = T(2")]
< l|z* —zp| + plz* —zp_a|
Since {xy,} converges to z*, we can make this upper bound ar-
bitrarily small by choosing n sufficiently large. This means that
|a* — T'(2*)] = 0, hence z* = T'(z*).
3. Suppose y* =T (y*) y* # «*.

*

27 =y = [T(2") = T(y")| < ple” —y*| = 2" =y".

Thus we have a contradiction.
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