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Overview

¢ Introduce nonlinear systems

¢ Define equilibria, linearization, stability in scalar systems
* Provide some canonical examples

Additional Reading;:

¢ Khalil, Chapter 1

* Sastry, Chapter 1

Linear Systems

We use the shorthand notation % = f(x)
x = Ax, x(t()) =x € R" (1) for %x(t) = f(x(1)).

Here, A is an n x n constant matrix. This linear system has the fol-
lowing properties:

1. Solutions always exist, and are given in closed form

x(t) = Aty ¢ > 1

2. Solutions exist for all —co <t < oo
3. Solutions are unique
4. The set of equilibrium points is the nullspace of A (i.e., connected)

5. Periodic solutions are only marginally stable, never stable (asym-
potically or exponentially)

Nonlinear Systems

In comparison, nonlinear systems are more complex but also more
expressive. We will consider nonlinear systems of the form:

x = f(x), x(ty) € R" &)
with £ : R" — R,

This system is time-invariant. We can also consider time-varying
systems:

¥=f(x) f:R"—>R" time-invariant (autonomous)
¥=f(t,x) f:RxR"—R" time-varying (non-autonomous)
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When the system has a control input # € R™, the linear and nonlin-

ear system dynamics are: Sometimes the nonlinear system can be
written as ¥ = f(x) 4+ g(x)u, which is
% = Ax + Bu T = f(x, Ll) (3) called control-affine form.

Nonlinear System Analysis and Design

® Analysis (first half of course): Determine stability, convergence, etc

of x = f(x)

¢ Design (second half of course): Choose u as a function of x to
achieve desired behavior

Motivating Scalar Example

Logistic growth model in population dynamics
B !
x—f(x)—r(l—ﬁ>x, r>0, K>0 (4) r

x > 0 denotes the population, K is called the carrying capacity, and r
is the intrinsic growth rate. K

A4

For systems with a scalar state variable x € R, stability can be deter-
mined from the sign of f(x) around the equilibrium. In this example f(x)
f(x) > 0for x € (0,K), and f(x) < 0 for x > K; therefore

x =0 unstable equilibrium G >
x = K asymptotically stable.

In general, x = x* is an equilibrium for ¥ = f(x) if f(x*) =0



Linearization

Local stability properties of x* can be determined by linearizing the
vector field f(x) at x*. These linearized dynamics are expressed in
terms of deviations from the equilibrium ¥ = x — x*. The dynamics
of ¥ are given by:

2 f(x*+ %) (5)

The linearization of these dynamics can be solved as before, using a
first-order Taylor series approximation:

fx*+x)=f(x")+ 3r % 4 higher order terms (6)

x=x*
A
= A

for ¥ = x — x* Thus, the linearized model is:

% = AX. (7)

If RA;(A) < 0 for each eigenvalue A; of A, then x* is asymp. stable.

If RA;(A) > 0 for some eigenvalue A; of A, then x* is unstable.

Example: Logistic growth model above:

f(x)

f'(0)>0 f(K)<O0
unstable stable

Caveats:

1. Only local properties can be determined from the linearization.

Example: The logistic growth model linearized at x = 0 (¥ = rx)
would incorrectly predict unbounded growth of x(t). In reality,
x(f) = K.

2. If ®A;(A) < 0 with equality for some i, then linearization is
inconclusive as a stability test. Higher order terms determine
stability.
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Note this comes from the standard

3

first-order Taylor series approximation:

flx) = f(x) + f/(x") (x — x*) and

substituting in x = x* + &
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Example: f(x) =28 vs. flx) =—x3

/ > X X

£/(0) = 0 in each case, but one is stable and the other is unstable.

Motivating Example 2

Let’s consider the pendulum system with a frictional force resisting
the motion (coefficient of friction k):

¢mb = —kld — mgsin 6 (8)
or

i —k, g .
B—WH—TsmG (9)

Note: These dynamics can be derived from the Lagrangian:
L£(0,0) = KE — PE

= %mézéz —mgl cos 6

with the equations of motion given via the Euler-Lagrange equations

(d’Alembert Principle): The damping torque acting on the
pendulum is -¢(k¢6) for the planar
i % B % . pendulum.
dt\oo) o0
d 24 : _ 24
= (me20) +mgesing = —ke*
ml*0 4+ mglsin@ = —k(>f
i+ 8 sing = —59
14 m
0=——0—Fsino

Define x = [ g ] State space: S' x R.

The system dynamics & can be rewritten in terms of this state as:

i 0 _ 6 B X2 (10)
Tle| —%Qf%sirﬂ B f%xz—%sinxl

4
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Equilibria: (0,0) and (7,0)

(stable) at x; =0

ox Scosx; —

af_[ 0 11_ —§ —m

(unstable) at x; = 7©

sl O

Phase portrait: plot of x1(t) vs. x(t) for 2nd order systems

Figure 1: Phase portrait of the pendu-
lum for the undamped case k = 0 with
m=19¢=98(=1
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