
ECE 4560 Exponential Representation of Rotations Lecture 8

Topics Covered:

• Introduction to Exponential Representation

• Exponential Representation of Rotations

Additional Reading:

• MLS Chapter 2, Section 2.2; LP 3.2.3

Exponential Representation of Group Motion / Displacements

In linear control, we often describe the dynamics of a linear system as:

ẋ = Ax

where x is our state variable of size n and A is a matrix of size n × n. In the case of a linear
time-invariant system, the solution to this differential equation is:

x(t) = eAtx(0)

where eAt is known as the matrix exponential. We define this matrix exponential as:

eAt =
∞∑
n=1

(At)n

n!

In this class, we are going to using this same Exponential Mapping to map between Lie Groups
(SO(3) and SE(3)) and their corresponding Lie Algebras (so(3) and se(3)).

We will go over these expressions later, but in general you can think of the following map:

so(3) SO(3)

exp

ln

Here, exp is called the exponential map, and ln (the inverse operation) is called the Logarithm.
These correspond to the matrix exponential and matrix logarithm operations respectively.

In general, exp and ln are useful for translating between finite transformations (rotations or rigid
body motions) and their infinitesimal generators (like angular velocities and twists), allowing
smooth and efficient computations in 3D space.
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Example of Exponential Representation

Let’s consider the example you had from a previous homework where there is a mobile robot in
the 3D world.

Robot 
Camera View

The mobile robot obtains measurements of it’s orientation using an inertial measurement unit
(IMU) that provides us with angular velocities. We can then compute the exponential map at
each time step to obtain how the orientation of the robot changes over time. For example, if the
angular velocity readings of the robot are ω(t) = [0, 0, 0.1]⊤:

R(0 + δt) = exp([ω]×δt)R(0)

A visual representation of this mapping is the following (we will discuss in class):

One main benefit of using these exponential representations is that they allow us to smoothly
interpolate between different orientations and to integrate rotational dynamics over time.
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Method Pros Cons When to Use
Exponential Map Accurate for integrating

rotations, natural for Lie
groups

Requires matrix expo-
nentiation, more com-
plex mathematically

Advanced robotics and
control applications

Quaternions Compact, no gimbal
lock, efficient for inte-
gration

Slightly more abstract
than Euler angles

Real-time systems (e.g.,
drones, IMU fusion)

Euler Angles Intuitive, simple for
small rotations

Subject to gimbal lock,
less efficient for com-
plex rotations

Basic applications,
small-angle motions

Table 1: Comparison of Rotation Representation Methods

We will cover exp, ln for each group and their properties. In this lecture, we will cover the special
orthogonal group, with the following lecture covering the remaining two. Outline:

1. SO(3) and so(3)

2. SE(3) and se(3)

3. SE(2) and se(2)

Exponential Representation for SO(3) and so(3)

In the context of rotations, SO(3) represents the special orthogonal group in 3D space, which
consists of 3x3 orthogonal matrices with determinant 1 that represent 3D rotations. The Lie algebra
so(3) represents the set of 3x3 skew-symmetric matrices, which correspond to angular velocities
(or “infinitesimal rotations”).

consider a point on a body undergoing rotation:

q̇(t) = ω × q(t) = [ω]×q(t) (1)

here, ω is the axis of rotation, while [ω]× is the axis
represented as a matrix

If we integrate this velocity, we get:

q(t) = e[ω]×τq(0)

WAIT: what is e[ω]×τ? It is the solution to differential equation in (1).
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From so(3) to SO(3) using the Exponential Map

The matrix exponential function exp : so(3) → SO(3) maps a skew-symmetric matrix (which
encodes a rotation axis and angle) to a rotation matrix. This is often combined with some “units
of time”, τ . This operation essentially “exponentiates” the infinitesimal rotation to get a finite
rotation.

Mathematically:
R(ω, τ) = e[ω]×τ ∈ SO(3)

Later we will derive the form of this computating via Rodrigues’ rotation formula.

From SO(3) to so(3) using the Logarithm

The matrix logarithm function ln : SO(3) → so(3) maps a rotation matrix back to a skew-
symmetric matrix, which corresponds to the angular velocity or axis-angle representation of the
rotation.

Mathematically:
[ω]× = ln(R) ∈ so(3)

Computing the Exponential Map for Rotations

The definition of the exponent of a matrix is:

eA =
∞∑
n=0

1

n!
An (from Taylor series for eA)

e[ω]×τ =
∞∑
n=0

1

n!
([ω]×τ)

n

If rotated for τ units of time, then:
R(ω, τ) = e[ω]×τ

Can we compute e[ω]×τ without requiring the infinite series expansion definition? Yes! We will do
this with the help of Rodrigues’ formula. Most derivations of this formula assume that [ω]× has
unit magnitude (∥ω∥ = 1). This allows us to observe the following. For simplicity of notation we
will denote [ω]× as the matrix W .

W 2 = WW = −W⊤W = −I
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Using this assumption, we can observe the following series:

W 3 = W 2W = −W

W 4 = W 2W 2 = −W 2

W 5 = W 2W 3 = −W 3 = W

W 6 = W 2W 4 = −W 4 = W 2

W 7 = W 2W 5 = −W

W 8 = W 2W 6 = −W 2

W 9 = W 2W 7 = W

W 10 = W 2W 8 = W 2

...

Ultimately, we should see a pattern emerge that allows us to simplify the series expansion:

e[ω]×τ =
∞∑
n=0

1

n!
([ω]×τ)

n

= I + [ω]×τ + [ω]2×
τ 2

2!
+ [ω]3×

τ 3

3!
+ · · ·

= I +

(
τ − τ 3

3!
+

τ 5

5!

)
[ω]× +

(
τ 2

2!
− τ 4

4!
+

τ 6

6!

)
[ω]2×

Recalling the series expansions for sin(t) and cos(t):

sin(t) = t− t3

3!
+

t5

5!
− · · ·

cos(t) = 1− t2

2!
+

t4

4!
− · · ·

Therefore, our expression from before can be further simplified.

e[ω]×τ = I +

(
τ − τ 3

3!
+

τ 5

5!

)
︸ ︷︷ ︸

sin(τ)

[ω]× +

(
τ 2

2!
− τ 4

4!
+

τ 6

6!

)
︸ ︷︷ ︸

1−cos(τ)

[ω]2×

= I + [ω]× sin(τ) + [ω]2×(1− cos(τ))

This expression is Rodrigues’ Formula!
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Aside: without the assumption that ∥ω∥ = 1, a similar relationship can be found using
the following Lemma:

Lemma. Given a ∈ R3 such that [a]× ∈ so(3), then:

[a]2× = aa⊤ − ∥a∥2I, and
[a]3× = −∥a∥2[a]×

Then, plugging these relationships into our series expansion would yield the modified
version of Rodrigues’ Formula:

e[ω]×τ = I +
[ω]×
∥ω∥

sin(∥ω∥τ) +
[ω]2×
∥ω∥2

(1− cos(∥ω∥τ))

Next, can we show that eωτ ∈ SO(3) (i.e., that eωτ produces a valid rotation matrix)?

Well, R ∈ SO(3) =⇒ R⊤R = I and det(R) = 1

a) (e[ω]×τ )⊤(e[ω]×τ ) = e[ω]
⊤
×τe[ω]×τ = e−[ω]×τe[ω]×τ = I

b) det(e[ω]×τ ) = eTr[ω]×τ = e0 = 1

Thus, e[ω]×τ ∈ SO(3) is true. But what about the other way around?

The exponential map is surjective onto SO(3) (Proposition 2.5 from MLS):

Proposition 1. Given R ∈ SO(3), there exists an ω ∈ R3 where ∥ω∥ = 1, and a τ ∈ R
such that R = exp([ω]×τ).

Note that this is like saying that there exists a function taking in an R and returning a pair
(ω, τ) such that R = exp(ωτ) where ∥ω∥ = 1.
This function will be called the logarithm and will be denoted by ln,

(ω, τ) = ln(R), where ∥ω∥ = 1.

If we allow for ∥ω∥ = τ , then we will write

ω = lnR

The pair (ω, τ) are not necessarily unique!
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Proof of Proposition:

Proof. The proof is a little nasty and constructive.

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33


Note: only 3 of these entries are uniquely determined, (ω, τ) has only 3 unique variables
too.

e[ω]×τ = I + [ω]× sin(τ) + [ω]2×(1− cos(τ))

=⇒ let sτ = sin(τ), cτ = cos(τ), vτ = (1− cos(τ))

=

1− vτ ((ω
2)2 + (ω3)2) ω1ω2vτ − ω3sτ ω1ω3vτ + ω2sτ

ω1ω2vτ + ω3sτ 1− vτ ((ω
1)2 + (ω3)2) ω2ω3vτ − ω1sτ

ω1ω3vτ − ω2sτ ω2ω3vτ + ωsτ 1− vτ ((ω
′)2 + (ω2)2)


=

 (ω1)2vτ + cτ ω1ω2vτ − ω3sτ ω1ω3vτ + ω2sτ
ω1ω2vτ + ω3sτ (ω2)2vτ + cτ ω2ω3vτ − ω1sτ
ω1ω3vτ − ω2sτ ω2ω3vτ + ω1sτ (ω3)2vτ + cτ


Equating matrix elements should give the answer. It will suffice to equate enough coeffi-
cients to find ω and τ .
a) examine the trace.

Tr(R) = r11 + r22 + r33

Tr(e[ω]×τ ) = 1 + 2 cos(τ)

=⇒ 1 + 2 cos(τ) = Tr(R)

=⇒ cos(τ) =
Tr(R)− 1

2

=⇒ τ = cos−1

(
Tr(R)− 1

2

)
This solution can be zero, and can go to ±2πn and still give the same answer.
If τ = 0, then ω can be anything.
If τ ̸= 0, then need to find ω.
b) examine R.
Well, if the look at the off-diagonal terms of R − R⊤ and e[ω]×τ − (e[ω]×τ )⊤ = e−[ω]×τ −
e−[ω]×τ , we have

r32 − r23 = 2ω1 sin(τ)

r13 − r31 = 2ω2 sin(τ)

r21 − r12 = 2ω3 sin(τ)
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=⇒

ω =
1

2 sin τ


r32 − r23
r13 − r31
r21 − r12


So, now that we got the answer, does it make sense?
Well, first off,

Tr(R) = Σλi

or the sum of eigenvalues, what are these like? det(R) =
∏

λi = 1 or λ1 · λ2 · λ3 = 1.
One eigenvalue is λ1 = 1, which leaves λ2 · λ3 = 1. The others are two complex conjugates
λ · λ⋆ = 1

Tr(R) = 1 + λ+ λ⋆

= 1 + 2Re(λ) (between 0 and 1)

=⇒

1 + 2Re(λ) = 1 + 2 cos(τ)

Therefore, a solution is possible.

In summary:

Given ω ∈ R3 such that [ω]× ∈ so(3) (and ∥ω∥ = 1),

e[ω]×τ = I + [ω]× sin(τ) + [ω]2×(1− cos(τ)) ∈ SO(3)

Given R ∈ SO(3), there exists (∃) ω ∈ R3, τ ∈ R where ∥ω∥ = 1, defined by

τ = cos−1

(
Tr(R)− 1

2

)
τ = 0, ω is arbitrary

τ ̸= 0, ω = 1
2 sin(θ)


r32 − r23

r13 − r31

r21 − r12


and is written as

(ω, τ) = ln(R)

or if ∥ω∥ can be non-unit
ω = lnR
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In this case ∥ω∥ encodes for the amount of rotation as did the τ . Then:

∥ω∥ = cos−1

(
Tr(R)− 1

2

)
ω

∥ω∥
=

1

2 sin(∥ω∥)


r32 − r23
r13 − r31
r21 − r12


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