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Topics Covered:
* Subscript Cancellation Rule
* Angular Velocity
* Twists
* Example
Additional Reading:

» LP 3.2.2 (Angular Velocity), 3.3.2 (Twists)

e MLS Chapter 2, Section 4
\_ J

Review

Last week we introduced the Lie algebra element se(2) and se(3) as the tangent space at the iden-
tity of SE(2) and SE(3), respectively. We also showed that this element is derived as the time
derivative of a transformation matrix g(¢) at ¢t = 0:

E= o] = [k 7] esetmnts

where £ = {Zj}} € R3/RC is called a twist.

In this lecture, we will discuss the difference between spatial and body twists.

Definition: Subscript Cancellation Rule

Page 62 of Modern Robotics by Kevin Lynch and Frank Park (LP) describes the “Subscript
Cancellation Rule” as follows: When multiplying two rotation matrices, if the second sub-
script of the first matrix matches the first subscript of the second matrix, the two subscripts
“cancel” and a change of reference frame is achieved:

Ry Rye = RG¢R¢C = Rac

A rotation matrix is just a collection of three unit vectors, so the reference frame of a vector
can also be changed by a rotation matrix using a modified version of the Subscript Cancel-
lation Rule:

Rappy = Rypy = Pa

The subscript cancellation rule also extends to transformations by considering some arbi-
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trary reference frames a, b and c and some vector v expressed in frame b:

Gab9be = gaﬁgﬁc = bac

and
GabVb = ga¢/U¢ = Uq

where v, is the vector v expressed in frame a.

Angular Velocity

Consider the following frame attached to a rotating body:

A

w

z(u—A;) 20 \/19

%(t + At)

If we examine the body frame at times ¢ and ¢+ d¢, the change in frame orientation can be described
as a rotation of angle §6 about some unit axis w passing through the origin. As the limit 6t — 0,
we can define the angular velocity w as:

w:wé

This angular velocity is illustrated as follows:
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From the figure, we can decompose the individual coordinate axis velocities as:

T=wXZI
y=wxy
Z=wX 2

To express these equations in coordinates, we must choose a reference frame for w. Two natural
choices are the fixed frame s and the body frame b. This will later be discussed as resulting in
either spacial velocity or body velocity.

Starting with spacial frame, let w, € R? be the angular velocity expressed in fixed-frame coordi-
nates. Additionally let R() be the rotation matrix describing the orientation of the body frame with
respect to the fixed frame at time ¢ (i.e., Ry, (6(¢))). Each column of R then denotes a coordinate
frame axis in fixed-frame coordinates, denotes as

R = T To T3

Thus, the time rate of change for R can be expressed as:

R:[wsxrl Ws X Ty wsxrg]:wsxR

Aside into cross products:

Given two vectors a and b € R3, the cross product a x b represents the vector that is orthog-
onal (perpendicular) to both a and b with the direction determined by the right-hand rule.
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This product is defined as the determinant of:

ik
axb= a1 G as
by by b3

where ¢, j, and k are unit vectors in z, y, and z directions, respectively.
This is equivalent to the expression:

o Qg .|lap  as
by b3

- az as
T1b, by

el b

axXb=1

We’re going to use our trick with skew-symmetric matrices to get rid of the cross product.

Skew symmetric matrices:

. T . . .
Givena vector x = [21 x2 3] € R3, then the skew-symmetric matrix for z is

0 —x3 T9
[z]x = | 3 0 —-x
—X2 i 0

Thus, by converting w; into a skew-symmetric matrix, we can eliminate the cross product as:

R:ws X R
= [ws]x R

Skew symmetric matrices for planar rotations:

Note, in 2D our element w is one-dimensional, so our “cross product” is equivalent to rotat-
ing a vector in the plane. This rotation can be conceptualized as a perpendicular operator
represented by the skew-symmetric matrix:

Thus, for 2D, we denote w x R as:

wxX R=[w]xR

Continuing with our previous expression for the time rate of change of R, we can express the
angular velocity in fixed-frame coordinates by post-multiplying both sides by R~! gives us the
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expresson for the spacial angular velocity:

R = ws X R
= [ws]x R
[ws]x = RR!

Now, if we consider wj, to be expressed in body-frame coordinates, we can solve for the body frame

velocity using the transformation:
Ws = Rsbwb

Rearranging this expression also gives us the expression for the body angular velocity:

wp = ;ﬂus = R 'w, = R w,

Expressing the body-frame angular velocity in skew-symmetric matrix form yields:

[wi]x = [R wsx
= R'[w,]«R
= R"(RRNR
=R'R=R'R

(proof shown below)

Property of skew-symmetric matrices:

(From Proposition 3.8 of LP)
Given any w € R?, and R € SO(3), the following always holds:

R"[w]xR = [R"w]

Proof. Letting v be the ith row of R, we have:

T
R'wlxR=|r]| [wXxr wxry wxrs]
75
(7 (wx 1) ] (wx7ry) 7 (wx73)
= |rg(wxr) 79 (wxry) 79 (W XT3)
g (WX 7T1) 73 (wXTy) T4 (wXrs)
[0 —TaW  TyW
=|rw 0 —-rw
_—r;w T w 0
= [R"w]x
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Definition: Angular Velocity in Fixed-Frame and Body-Frame (Prop 3.9 of LP)

Let R(t) denote the orientation of the rotating frame as seen from the fixed frame. Denote
w as the angular velocity of the rotating frame. Then:

[ws]x = RR7!
[w)x =R 'R=R'R

Twists

These formulas can be used to derive two more formulas for body and spatial twist in homogeneous
coordinates.

body twist:
. .. . [RT —R'd][R d
§ =gy Jsb = Gos9p = 0 1 0 0
_[RTR RTd
10 0
o _[Wb]x Ub
=10 o € s¢(2)/se(3)

spatial twist:

0 1
_ [RRT —RRWM’]

R RT —R'd
58 - gsbgsb - gs¢g¢5 - 0 0

0 0

— [wa]x %5] € s¢(2)/se(3)

Note that in both cases, we can get the vector form by “unhatting”:

a=(@) = {2 e=@) {2}
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Also, note that in this formula, v, = —RR"d + d should NOT be interpreted as the linear velocity
of the base-frame origin expressed in the fixed frame (that would simply be d). Instead, the physical
meaning is the instantaneous velocity of the body, currently at the fixed-frame origin, expressed in
the fixed frame:

* wy: the angular velocity expressed in {b}

ws: the angular velocity expressed in {s}

vp: the linear velocity of a point at the origin of {b} expressed in {b}

vs: the linear velocity of a point at the origin of {s} expressed in {s}

The intuition behind the expression for v can be derived as:
Vs = dsb - RRTd
= dsb - [ws] <d
= dsb — Wg X d

:dsb—l—wsx—d

This is summarized by the diagram:
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Example

Consider the following example:

This example shows the top view of a car, with a single steerable front wheel driving on a plane.
The angular velocity caused the the rotation of the front wheel is w = 2 rad/s about point . We
can write the point of rotation in reference to either s or b as:

re =(2,-1,0), m,=(2,—1.4,0)

The angular velocity can then be expressed in either frame as:

ws = (0,0,2), w,=(0,0,-2)

From the figure, we can solve for spatial and body velocity of the car’s frame as:

Vs = wg X (—=15) =75 X wg = (—2,—4,0)
Vp = Wp X (—T’b) =Ty X Wp = (28,4,0)

Putting these together we can obtain the spatial and body twists as:

—2 2.8
58 = —4 ; gb - 4
2 —2

Notice that we can also do this in 2D notation using [w]y, = B —Ow] :

= [
o= 1% -1

Next class we will go over how to apply change of frame transformations to twists using the adjoint
operation, i.e., §s = Ad,,_, &p.



