
ECE 4560 Angular Velocity and Twists Lecture 6

Topics Covered:

• Subscript Cancellation Rule

• Angular Velocity

• Twists

• Example

Additional Reading:

• LP 3.2.2 (Angular Velocity), 3.3.2 (Twists)

• MLS Chapter 2, Section 4

Review

Last week we introduced the Lie algebra element se(2) and se(3) as the tangent space at the iden-
tity of SE(2) and SE(3), respectively. We also showed that this element is derived as the time
derivative of a transformation matrix g(t) at t = 0:

ξ̂ =
d

dt
g(t)

∣∣∣∣
t=0

=

[
[ω]× v
0 0

]
∈ se(2)/se(3)

where ξ =

{
v
ω

}
∈ R3/R6 is called a twist.

In this lecture, we will discuss the difference between spatial and body twists.

Definition: Subscript Cancellation Rule

Page 62 of Modern Robotics by Kevin Lynch and Frank Park (LP) describes the “Subscript
Cancellation Rule” as follows: When multiplying two rotation matrices, if the second sub-
script of the first matrix matches the first subscript of the second matrix, the two subscripts
“cancel” and a change of reference frame is achieved:

RabRbc = Ra�b
R
�bc
= Rac

A rotation matrix is just a collection of three unit vectors, so the reference frame of a vector
can also be changed by a rotation matrix using a modified version of the Subscript Cancel-
lation Rule:

Rabpb = Ra�b
p
�b
= pa

The subscript cancellation rule also extends to transformations by considering some arbi-
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trary reference frames a, b and c and some vector v expressed in frame b:

gabgbc = ga�bg�bc = gac

and
gabvb = ga�bv�b = va

where va is the vector v expressed in frame a.

Angular Velocity

Consider the following frame attached to a rotating body:

If we examine the body frame at times t and t+δt, the change in frame orientation can be described
as a rotation of angle δθ about some unit axis ω̂ passing through the origin. As the limit δt → 0,
we can define the angular velocity ω as:

ω = ŵθ̇

This angular velocity is illustrated as follows:
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From the figure, we can decompose the individual coordinate axis velocities as:

˙̂x = ω × x̂

˙̂y = ω × ŷ

˙̂z = ω × ẑ

To express these equations in coordinates, we must choose a reference frame for ω. Two natural
choices are the fixed frame s and the body frame b. This will later be discussed as resulting in
either spacial velocity or body velocity.

Starting with spacial frame, let ωs ∈ R3 be the angular velocity expressed in fixed-frame coordi-
nates. Additionally let R(t) be the rotation matrix describing the orientation of the body frame with
respect to the fixed frame at time t (i.e., Rsb(θ(t))). Each column of R then denotes a coordinate
frame axis in fixed-frame coordinates, denotes as

R =

r1 r2 r3


Thus, the time rate of change for R can be expressed as:

Ṙ =
[
ωs × r1 ωs × r2 ωs × r3

]
= ωs ×R

Aside into cross products:

Given two vectors a and b ∈ R3, the cross product a× b represents the vector that is orthog-
onal (perpendicular) to both a and b with the direction determined by the right-hand rule.
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This product is defined as the determinant of:

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
where i, j, and k are unit vectors in x, y, and z directions, respectively.
This is equivalent to the expression:

a× b = i

∣∣∣∣a2 a3
b2 b3

∣∣∣∣− j

∣∣∣∣a1 a3
b1 b3

∣∣∣∣+ k

∣∣∣∣a2 a3
b2 b3

∣∣∣∣
We’re going to use our trick with skew-symmetric matrices to get rid of the cross product.

Skew symmetric matrices:

Given a vector x =
[
x1 x2 x3

]⊤ ∈ R3, then the skew-symmetric matrix for x is

[x]× =

 0 −x3 x2

x3 0 −x1

−x2 x1 0


Thus, by converting ωs into a skew-symmetric matrix, we can eliminate the cross product as:

Ṙ = ωs ×R

= [ωs]×R

Skew symmetric matrices for planar rotations:

Note, in 2D our element ω is one-dimensional, so our “cross product” is equivalent to rotat-
ing a vector in the plane. This rotation can be conceptualized as a perpendicular operator
represented by the skew-symmetric matrix:

[ω]× =

[
0 −ω
ω 0

]
Thus, for 2D, we denote ω ×R as:

ω ×R = [ω]×R

Continuing with our previous expression for the time rate of change of R, we can express the
angular velocity in fixed-frame coordinates by post-multiplying both sides by R−1 gives us the
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expresson for the spacial angular velocity:

Ṙ = ωs ×R

= [ωs]×R

[ωs]× = ṘR−1

Now, if we consider ωb to be expressed in body-frame coordinates, we can solve for the body frame
velocity using the transformation:

ωs = Rsbωb

Rearranging this expression also gives us the expression for the body angular velocity:

ωb = R−1
sb ωs = R−1ωs = R⊤ωs

Expressing the body-frame angular velocity in skew-symmetric matrix form yields:

[ωb]× = [R⊤ωs]×

= R⊤[ωs]×R (proof shown below)

= R⊤(ṘR⊤)R

= R⊤Ṙ = R−1Ṙ

Property of skew-symmetric matrices:

(From Proposition 3.8 of LP)
Given any ω ∈ R3, and R ∈ SO(3), the following always holds:

R⊤[ω]×R = [R⊤ω]×

Proof. Letting r⊤i be the ith row of R, we have:

R⊤[ω]×R =

r⊤1r⊤2
r⊤3

 [
ω × r1 ω × r2 ω × r3

]

=

r⊤1 (ω × r1) r⊤1 (ω × r2) r⊤1 (ω × r3)
r⊤2 (ω × r1) r⊤2 (ω × r2) r⊤2 (ω × r3)
r⊤3 (ω × r1) r⊤3 (ω × r2) r⊤3 (ω × r3)


=

 0 −r⊤3 ω r⊤2 ω
r⊤3 ω 0 −r⊤1 ω
−r⊤2 ω r⊤1 ω 0


= [R⊤ω]×
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Definition: Angular Velocity in Fixed-Frame and Body-Frame (Prop 3.9 of LP)

Let R(t) denote the orientation of the rotating frame as seen from the fixed frame. Denote
ω as the angular velocity of the rotating frame. Then:

[ωs]× = ṘR−1

[ωb]× = R−1Ṙ = R⊤Ṙ

Twists

These formulas can be used to derive two more formulas for body and spatial twist in homogeneous
coordinates.

body twist:

ξ̂b = g−1
sb ġsb = gb�sġ�sb =

[
R⊤ −R⊤d
0 1

] [
Ṙ ḋ
0 0

]
=

[
R⊤Ṙ R⊤ḋ
0 0

]
=

[
[ωb]× vb
0 0

]
∈ se(2)/se(3)

spatial twist:

ξ̂s = ġsbg
−1
sb = ġs�bg�bs =

[
Ṙ ḋ
0 0

] [
R⊤ −R⊤d
0 1

]
=

[
ṘR⊤ −ṘR⊤d+ ḋ
0 0

]
=

[
[ωs]× vs
0 0

]
∈ se(2)/se(3)

Note that in both cases, we can get the vector form by “unhatting”:

ξb =
(
ξ̂b

)∨
=

{
vb
ωb

}
, ξs =

(
ξ̂s

)∨
=

{
vs
ωs

}
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Also, note that in this formula, vs = −ṘR⊤d+ ḋ should NOT be interpreted as the linear velocity
of the base-frame origin expressed in the fixed frame (that would simply be ḋ). Instead, the physical
meaning is the instantaneous velocity of the body, currently at the fixed-frame origin, expressed in
the fixed frame:

• ωb: the angular velocity expressed in {b}

• ωs: the angular velocity expressed in {s}

• vb: the linear velocity of a point at the origin of {b} expressed in {b}

• vs: the linear velocity of a point at the origin of {s} expressed in {s}

The intuition behind the expression for vs can be derived as:

vs = ḋsb − ṘR⊤d

= ḋsb − [ωs]×d

= ḋsb − ωs × d

= ḋsb + ωs ×−d

This is summarized by the diagram:
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Example

Consider the following example:

This example shows the top view of a car, with a single steerable front wheel driving on a plane.
The angular velocity caused the the rotation of the front wheel is w = 2 rad/s about point r. We
can write the point of rotation in reference to either s or b as:

rs = (2,−1, 0), rb = (2,−1.4, 0)

The angular velocity can then be expressed in either frame as:

ωs = (0, 0, 2), ωb = (0, 0,−2)

From the figure, we can solve for spatial and body velocity of the car’s frame as:

vs = ωs × (−rs) = rs × ωs = (−2,−4, 0)

vb = ωb × (−rb) = rb × ωb = (2.8, 4, 0)

Putting these together we can obtain the spatial and body twists as:

ξs =


−2
−4
2

 , ξb =


2.8
4
−2


Notice that we can also do this in 2D notation using [ω]× =

[
0 −ω
ω 0

]
:

vs =

[
0 −2
2 0

] [
−2
1

]
=

[
−2
−4

]
vb =

[
0 2
−2 0

] [
−2
1.4

]
=

[
2.8
4

]
Next class we will go over how to apply change of frame transformations to twists using the adjoint
operation, i.e., ξ̂s = Adgsb ξ̂b.
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