
ECE 4560 Introduction to Velocity Lecture 5

Topics Covered:

• Introduction to Velocity

• Lie Algebras

Additional Reading:

• LP 3.2.2

• MLS Chapter 2, Section 3.2 and Section 4.1

The Space of Rigid Body Motions

Recall that space of planar rigid body motions is described by the Special Euclidean group SE(2)

One representation is homogeneous coordinates:

g =

[
R d⃗
0 1

]
, d ∈ R2×1 = E2, R ∈ SO(2)

The composition of SE(2) is then written as E2 × SO(2).

What is SE(3), well it’s the space of rigid body motions in 3D composed by E3 × SO(3).

Here, SO(3) is the special orthogonal group in 3D, which is the set of all 3 × 3 rotation matrices
that are orthogonal and have determinant 1:

R ∈ SO(3) :

e1 e2 e3

 , e3 = e1 × e2, R⊤R = I, det(R) = +1

Thus, in 3D our homogeneous coordinates become:

g =

[
R d⃗
0 1

]
=

[
3× 3 3× 1
1× 3 1× 1

]
Now we want to ask: how can we describe rigid body motion rather than just rigid body transfor-
mations.

Introduction to Velocity

To think about motion, we need to go back to first principles.
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• vectors arise from infinitesimal displacements associated to trajectories

curve p(t) ⇒ time derivative ṗ(t) is a vector (varies according to the curve)

What is a vector?

1. displacement/change between two Euclidean points v = q2 − q1

2. mathematical description of the incremental change when following a trajectory in Euclidean
space

Properties of vectors:

1. form a linear space: (can add vectors & multiply by scalar)

2. transform under reference frame change

3. there is a mapping from displacements to vectors (and vice-versa)

Velocities in SE(2): So, let’s start with a trajectory in SE(2), given by g(t).

g(t) : [t0, t1] → SE(2)
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Question: What is the velocity of the body moving according to g(t)?

g(t) =

[
R(θ(t)) d(t)

0 1

]
ġ(t) =

[
d
dt
R(θ(t)) d

dt
d(t)

0 0

]
where the derivative of our rotation matrix can be computed as:

d

dt
R(θ(t)) =

d

dt

[
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

]
=

[
− sin(θ)θ̇ − cos(θ)θ̇

cos(θ)θ̇ − sin(θ)θ̇

]
=

∂R(θ)

∂θ
θ̇

= DR(θ) · θ̇

Aside:

A quick note about notation. There are many ways to denote derivatives and partial deriva-

tives, depending on your application. Consider the following for f = x2y and g =

[
x2y
y3

]
Notation Function Type Name Example

∂f
∂x

Scalar or vector Partial derivative ∂f
∂x

= 2xy, ∂g
∂x

=

[
2xy

0

]
∇f Scalar Gradient ∇f(x, y) =

[
∂f
∂x

∂f
∂y

]
=

[
2xy x2

]
J Vector Jacobian J =

[
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

]
=

[
2xy x2

0 3y2

]
Since we want a shorthand notation of writing ∂R

∂θ
, we will abuse notation and use D to

denote this partial derivative. However, note that D is typically used to denote the total
derivative of a scalar or vector-valued function.

Continuing with our notation, we can write our velocity of the body as:

ġ(t) =

[
DR(θ) · θ̇ ḋ

0 0

]
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To describe the change in velocity in the body frame, we can use a coordinate frame transformation:

ġBB(t) = gBA(t)ġ
A
B(t)

=
(
gAB(t)

)−1
ġAB(t)

=

[
R⊤ −R⊤d
0 1

] [
DR(θ) · θ̇ ḋ

0 0

]
=

[
R⊤DR(θ)θ̇ R⊤ḋ

0 0

]

Solving for the rotational component:

R⊤DR(θ) · θ̇ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]⊤ [
− sin(θ) − cos(θ)
cos(θ) − sin(θ)

]
· θ̇

=

[
− cos(θ) sin(θ) + sin(θ) cos(θ) − cos(θ)2 − sin(θ)2

cos(θ)2 + sin(θ)2 − sin(θ) cos(θ) + cos(θ) sin(θ)

]
· θ̇

=

[
0 −1
1 0

]
· θ̇

= [θ̇]×

This is the skew-symmetric matrix-version of the velocities. Note: a skew-symmetric matrix is
defined as the following:

Definition: Skew-Symmetric Matrix

Given a vector v =


a
b
c

 the skew-symmetric matrix is defined as:

[v]× =

 0 −c b
c 0 −a
−b a 0


One use of these matrices is that they transform cross products:

a× b = [a]×b

Additional properties of skew-symmetric matrices include:

1. If A is skew-symmetric, then A⊤ = −A

2. If A is skew-symmetric, then aji = −aij
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Continuing with our derivation:

ġBB(t) =

[
R⊤DR(θ)θ̇ R⊤ḋ

0 0

]
=

[
[θ̇(t)]× R−1(θ(t))ḋ(t)

0 0

]
(where implicitly ḋ(t) = ḋAB(t))

We can think of this as:

ġBB(t) =

[
[θ̇(t)]× ḋBB(t)

0 0

]
(This is called body velocity!)

Because ġBB(t) depends on three variables only, it is often convenient to write it that way. Further-
more, there is another symbol for velocities of SE(2) elements; it is ξ. (the symbol xi).

The velocity ξ is written as:

ξ =

{
v
ω

}
=


vx
vy
ω

 (ξ ∈ R3 for SE(2), ξ ∈ R6 for SE(3))

this can be thought of as the vector form of velocity for the vector form coordinates g = {x, y, θ}.

Ok, but what is ξ in homogeneous representation?

ξ̂ =

[
[ω]× v
0 0

]
(If you want to keep the notation separate from unit vectors, we can denote this as (·)∧)

Thus, from vector form of a vector to homogeneous form is called “hatting”. The other way is
called “unhatting” and will be denoted as (·)∨.

The benefit of homogeneous coordinates will be that it will allow us to easily change between
spacial and body velocity

ġBB = gBA · ġAB
⇕

ξ̂B = gBA · ξ̂A

Notably this matrix ξ is a Lie algebra element of our Lie group SE(2), i.e., ξ̂ ∈ se(2). Similarly,
[ω]× ∈ so(2). Here, the gothic font is used to denote the Lie algebra element of the Lie group. In
short, the Lie algebra is the tangent space of the Lie group near the identity.

• For SE(2), the Lie algebra element is denoted se(2)
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• For SE(3), the Lie algebra element is denoted se(3)

• For SO(2), the Lie algebra is denoted so(2)

• For SO(3), the Lie algebra is denoted so(3)

Definition: Lie algebra

A Lie algebra is a vector space g together with an operation (called the Lie bracket) denoted
g× g → g that satisfies the Jacobi identity (x× (y × z) + y × (z × x) + z × (x× y) = 0).

Notably, every Lie group gives rise to a Lie algebra, which is the tangent space at the identity.

Example:

• for so(2)/so(3), the Lie algebra is the set of all possible Ṙ when R = I

• for se(2)/se(3), the Lie algebra is the set of all possible ġ when g = I

To demonstrate the property of linearity for se(2), consider the following:

ξ1 + ξ2 =

{
v1
ω1

}
+

{
v2
ω2

}
=

{
v1 + v2
ω1 + ω2

}
ξ̂1 + ξ̂2 =

[
[ω1]× v1
0 0

]
+

[
[ω2]× v2
0 0

]
=

[
[ω1]× + [ω2]× v1 + v2

0 0

]
=

[
[ω1 + ω2]× v1 + v2

0 0

]
= (ξ1 + ξ2)

∧
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