
ECE 4560 Lie Group and Homogeneous Coordinates Lecture 4

Topics Covered:

• Special Euclidean Group SE(2)

• Homogeneous Coordinates

• Planar Manipulator Example

Additional Reading:

• LP 3.2.1, 3.3.1

• MLS 3.1

Review

Last class we introduced the product structure of transformations. We applied this concept to the
following example:

⇒

where we solved for the end-effector configuration gWC (the transformation of frame C with re-
spect to the world frame) as:

gWC = gWA · gAB · gBC

= (0, R(θ1)) · (d⃗1, R(θ2)) · (d⃗2, I)

= (0, R(θ1)) · (d⃗1 +R(θ2)d⃗2, R(θ2))

= (R(θ1)d⃗1 +R(θ1)R(θ2)d⃗2, R(θ1)R(θ2))

Today we will review the Special Euclidean Group SE(2) and introduce homogeneous coordi-
nates. These homogeneous coordinates will simplify our calculations.
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Special Euclidean Group SE(2)

The space of planar rigid body configurations / transformations is called SE(2) (termed Special
Euclidean).

Special Euclidean Group SE(2):

1. closure g1 · g2 ∈ G
2. associativity (g1 · g2) · g3 = g1 · (g2 · g3))
3. identity element exists e = (0, I)

4. inverse exists g−1 = (−RT d⃗, RT )

note that we saw multiple representations for SE(2), want to consider a special
version, called homogeneous representation. This will make our computations
more convenient.

It is perhaps also interesting to note that the group SE(2) is an instance of a Lie Group.

Definition: Lie Group

A Lie group is a group G which is also a smooth manifold and for which the group product
and inverse are smooth.

Homogeneous Coordinates

Homogeneous coordinates translate a transformation into a matrix form:

(d⃗, R) →
[
R d⃗
0 1

]
=

 × × ×
× × ×
× × 1

 matrix

where the matrix on the right illustrates the sizes of each element:

R → 2× 2, d⃗ → 2× 1, 0 → 1× 2, 1 → 1× 1

We can demonstrate that the properties of the SE(2) group still are valid for homogeneous coor-
dinates.

Properties of the SE(2) group:

Closure

g1g2 =

[
R1 d⃗1
0 1

] [
R2 d⃗2
0 1

]
=

[
R1R2 R1d⃗2 + d⃗1
0 1

]
=

[
R1R2 d⃗1 +R1d⃗2
0 1

]
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vs. (d⃗1, R1) · (d⃗2, R2) = (d⃗1 +R1d⃗2, R1R2)

Associativity Matrix multiplication preserves associativity (AB)C = A(BC).
Identity element:

e =

[
I 0
0 1

]
=

1 0 0
0 1 0
0 0 1


Inverse element: We will skip the proof of the matrix inversion for now, but the computation
would arrive at the following form for the inverse element:

g−1 =

[
RT −RT d⃗
0 1

]

Applying homogeneous coordinates to points

What about how we apply transformations to points and vectors?

We will now represent points by
{
p
1

}
=


x
y
1


To transform a point using homogeneous coordinates, we perform matrix multiplication:

g · p =

[
R d⃗
0 1

]{
p
1

}
=

{
Rp+ d⃗

1

}

Manipulators and SE(2)

Consider the same example planar manipulator as before:

⇒
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We can solve for the end-effector configuration gWC using the homogeneous coordinates:

gWC = gWA · gAB · gBC =

[
R(θ1) 0
0 1

] [
R(θ2) d⃗1
0 1

] [
I d⃗2
0 1

]
=

[
R(θ1)R(θ2) R(θ1)d⃗1

0 1

] [
I d⃗2
0 1

]
=

[
R(θ1)R(θ2) R(θ1)R(θ2)d⃗2 +R(θ1)d⃗1

0 1

]

Observe that this matches the previous coordinates we obtained:

i.e., gWC = (R(θ1)d⃗1 +R(θ1)R(θ2)d⃗2, R(θ1)R(θ2))

Note: we can make this computation slightly easier by observing that R(θ1)R(θ2) = R(θ1 + θ2).
Be careful, this is only true when the rotation axes are the same. It comes from the fact that
cos(θ1+θ2) = cos(θ1) cos(θ2)−sin(θ1) sin(θ2) and sin(θ1+θ2) = sin(θ1) cos(θ2)+cos(θ1) sin(θ2).

Proof that R(θ1)R(θ2) = R(θ1 + θ2):

R(θ1)R(θ2) =

[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

] [
cos(θ2) − sin(θ2)
sin(θ2) cos(θ2)

]
=

[
cos(θ1) cos(θ2)− sin(θ1) sin(θ2) − cos(θ1) sin(θ2)− sin(θ1) cos(θ2)
sin(θ1) cos(θ2) + cos(θ1) sin(θ2) − sin(θ1) sin(θ2) + cos(θ1) cos(θ2)

]
=

[
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]
= R(θ1 + θ2)

Thus, we can equivalently write our end-effector configuration as:

gWC =

[
R(θ1 + θ2) R(θ1 + θ2)d⃗2 +R(θ1)d⃗1

0 1

]

Example Let’s now consider the planar manipulator with specific parameters. Assume that the
manipulator is designed such that l1 = 1, l2 ∈ [1

2
, 2], θ1 ∈ [−π

2
, π
2
], θ2 ∈ [−3π

4
, 3π

4
]

In the zero configuration, our displacement variables are defined as:

d⃗1 =

{
1
0

}
, d⃗2 =

{
l2
0

}

Question: What is the end effector configuration for: θ1 = π
6
, θ2 = π

6
, l2 = 1?
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gWC =

[
R(θ1 + θ2) R(θ1 + θ2)d⃗2 +R(θ1)d⃗1

0 1

]

=

R(π
3
) R(π

6
)

{
1
0

}
+R(π

3
)

{
1
0

}
0 1


Solving for the displacement term gives us:

R
(π
6

){1
0

}
+R

(π
3

){1
0

}
=

[√
3/2 −1/2

1/2
√
3/2

]{
1
0

}
+

[
1/2 −

√
3/2√

3/2 1/2

]{
1
0

}
=

{
(1 +

√
3)/2

(1 +
√
3)/2

}

So plugging in this simplified expression gives us:

gWC =

R(π/3)

{
(1 +

√
3)/2

(1 +
√
3)/2

}
0 1

 ≡ ((1 +
√
3)/2︸ ︷︷ ︸

x

, (1 +
√
3)/2︸ ︷︷ ︸

y

, π/3︸︷︷︸
θ

)

Question: If the end-effector then grabs something and moves to θ1 =
π
6
, θ2 = −π

6
, l2 = 2. What

is the end-effector configuration now?

gWC =

R(0) R(π/6)

{
1
0

}
+R(0)

{
2
0

}
0 1


=

[1 0
0 1

] [√
3/2 −0.5

0.5
√
3/2

]{
1
0

}
+

[
1 0
0 1

]{
2
0

}
0 1


=

I {
2 +

√
3/2

0.5

}
0 1

 ≡

(
4 +

√
3

2
, 0.5, 0

)

Question: What transformation did the end effector undergo?

Well, we can consider the transformation pictorially as:
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where gWC represents the first configuration we solved for in reference to the world frame W , and
gWC′ represents the second configuration, again in reference to the world frame W .

Following the arrows, we see that we can solve for the transformation that the end-effector under-
goes as:

gCC′ = (gWC)
−1gWC′

Plugging in our homogeneous coordinate for gWC and gWC′ yields:

gCC′ = (gWC)
−1gWC′

=

R(−π
3 ) −R(−π

3 )

{
1+

√
3

2
1+

√
3

2

}
0 1


R(0)

{
2 +

√
3
2

1/2

}
0 1

 (Using: g−1 =

[
RT −RTd
0 1

]
)

=

R(−π
3 ) R(−π

3 )

{
2 +

√
3
2

1/2

}
−R(−π

3 )

{
1+

√
3

2
1+

√
3

2

}
0 1


=

R(−π
3 ) R(−π

3 )

{
3/2

−
√
3
2

}
0 1


=

R(−π
3 )

{
0

−2
√
3

}
0 1

 ≡ (0,−2
√
3,−π

3
)

Question: Lastly, now consider that there’s an object in the end-effector’s grip. What would this
transformation (gCC′) be for the object?

We can solve for this transformation using the adjoint transformation, which was defined in a
previous lecture as:

Adhg = hgh−1

This is also known as the adjoint transformation associated with h applied to g.
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In our case, consider the transformation from the end-effector to the object as:

h =

I {
1/4
0

}
0 1


which is illustrated by the following diagram:

We can solve for our formulation of the adjoint by following the arrows in the following diagram:

which gives us the relationship:

gDD′ = h−1gCC′h = Adh−1gCC′

Solving for this expression yields:

gDD′ =

[
I dh
0 1

]−1
R(−π/3)

{
0

−2
√
3

}
0 1

[I dh
0 1

]

=

[
I −dh
0 1

]R(−π/3)

{
0

−2
√
3

}
+R(−π/3)dh

0 1

 (Using: g−1 =

[
RT −RTd
0 1

]
)
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Solving separately for R(−π/3)dh yields:

R(−π/3)dh =

[
cos(−π/3) − sin(−π/3)
sin(−π/3) cos(−π/3)

]{
1/4
0

}
=

{
1/4

−
√
3/4

}
=

[
1/2

√
3/2

−
√
3/2 1/2

]{
1/4
0

}
=

{
1/8

−
√
3/8

}

Plugging this back in:

gDD′ =

[
I −dh
0 1

]R(−π/3)

{
0

−2
√
3

}
+

{
1/8

−
√
3/8

}
0 1


=

[
I −dh
0 1

]R(−π/3)

{
1/8

−(2 + 1/8)
√
3

}
0 1


=

R(−π/3)

{
1/8

−(2 + 1/8)
√
3

}
−
{
1/4
0

}
0 1


=

R(−π/3)

{
−1/8

−(2 + 1/8)
√
3

}
0 1


Thus, the object in the end-effector’s grip undergoes the transformation:

(−1/8,−(2 + 1/8)
√
3,−π/3)

.

8


