ECE 4560 Lie Group and Homogeneous Coordinates Lecture 4

~

Topics Covered:
* Special Euclidean Group SE(2)
* Homogeneous Coordinates
* Planar Manipulator Example
Additional Reading:
* LP3.2.1,33.1

* MLS 3.1
_ %

Review

Last class we introduced the product structure of transformations. We applied this concept to the
following example:

where we solved for the end-effector configuration gy ¢ (the transformation of frame C' with re-
spect to the world frame) as:

gwc = gwa - gAB - gBC
= (0, R(61)) - (d, R(62) - (do, )
= (0, R(th)) - (d, +R(92)J R(65))
= (R(0\)d, + R(0:)R(05)dy, R(0:) R(05))

Today we will review the Special Euclidean Group SE(2) and introduce homogeneous coordi-
nates. These homogeneous coordinates will simplify our calculations.

1
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Special Euclidean Group SFE(2)

The space of planar rigid body configurations / transformations is called SE(2) (termed Special
Euclidean).

1. closure g9 €qG

2. associativity (91-92) 95 = a1 (92 93))
3. identity element exists e=(0,1)

4. inverse exists g ' =(—R"d,RT)

L note that we saw multiple representations for S E£(2), want to consider a special
version, called homogeneous representation. This will make our computations
more convenient.

It is perhaps also interesting to note that the group SF/(2) is an instance of a Lie Group.

Definition: Lie Group

A Lie group is a group GG which is also a smooth manifold and for which the group product
and inverse are smooth.

Homogeneous Coordinates

Homogeneous coordinates translate a transformation into a matrix form:

R|d

<d7RH{O .

X X | X

} =] X X|X matrix
x x| 1

where the matrix on the right illustrates the sizes of each element:

R—2x2 d—2x1, 051x2, 1—-1x1

We can demonstrate that the properties of the SE(2) group still are valid for homogeneous coor-
dinates.

Closure

_[R d|[R: & _ [RiR, Rid,+d|| _ [RiRy d+ Ruid,
NPR=10 1|0 1 0 1 0 1
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vs. (dy, By) - (dy, Ry) = (dy + Ridy, RiRy)

Associativity Matrix multiplication preserves associativity (AB)C = A(BC).
Identity element:

70 1 00
6201:010
0 0 1

Inverse element: We will skip the proof of the matrix inversion for now, but the computation
would arrive at the following form for the inverse element:

. _[R" —R"d
9 =lo 1

Applying homogeneous coordinates to points

What about how we apply transformations to points and vectors?
T

We will now represent points by {11) } =<y
1

To transform a point using homogeneous coordinates, we perform matrix multiplication:
o _|R d|Jp| _JRp+d
or=[0 {7} {0
Manipulators and SE(2)

Consider the same example planar manipulator as before:
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We can solve for the end-effector configuration gy using the homogeneous coordinates:

o= [ ][0 4] 5
_ [RO)R(:) Rwl)ﬂ f d]
0 1 0 1

_ 'R<91>0R<92> R<01>R<92>c1zé + Rwl)d:]

Observe that this matches the previous coordinates we obtained:
ie., gwe = (R(61)d, + R(61)R(02)dy, R(61)R(6,))

Note: we can make this computation slightly easier by observing that R(0;)R(6,) = R(6, + 02).
Be careful, this is only true when the rotation axes are the same. It comes from the fact that
cos(601+05) = cos(6y) cos(f2)—sin () sin(6z) and sin(6,+65) = sin(6) cos(f2)+cos(0;) sin(6s).

[cos(0y) —sin(61)] [cos(fy) —sin(6s)
R(61)R(62) = sin(01)  cos(6:) } |:Siﬂ(92) cos(fy) }
[cos(0y) cos(fy) — sin(fy) sin(fy) — cos(fy) sin(s) — sin(6;) cos(6s)
|sin(6;) cos(6z) 4 cos(61) sin(fz)  — sin(6;) sin(6z) + cos(1) cos(6s)
 [eos(by +6) —sin(6; + 65)
~ |sin(f; + 65)  cos(6; + 65) }
= R(0h + 0)

(@]

Thus, we can equivalently write our end-effector configuration as:

0, + 6 0, + 05)d, 0,)d,
gwe = {R( 10+ 2) R(01+ 05) 12+R( 1) 1}

Example Let’s now consider the planar manipulator with specific parameters. Assume that the
manipulator is designed such that [, = 1,1, € [3,2], 6; € [5F, 2], 0, € [=%, 27]

In the zero configuration, our displacement variables are defined as:

- 1 - l
=y =)

Question: What is the end effector configuration for: 01 = %, 0, = %, 1, = 1?
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gwe = 'R(910+ 6) R(91+92){2 LR 91)‘5}
_ "R(g) R(%){é}+3<%){é}
| 0 1

Solving for the displacement term gives us:

r@ G0 - 150wl [ )

_J(1+V3)/2
(1++/3)/2
So plugging in this simplified expression gives us:
gwe = (1+v3)/2f | =((1+V3)/2,(1+V3)/2,7/3)
0 1 be R
Question: If the end-effector then grabs something and moves to ¢, = %, 0, = —%, I, = 2. What

is the end-effector configuration now?

(R(0) R(r/6) {(1)} + R(0) {g}
0 1

awc =

N[N AL B iR

0 1
[ [24+/3)2

_ |/ { 0.5 } z<4+2\/§,0.5,0>
0 1

Question: What transformation did the end effector undergo?

Well, we can consider the transformation pictorially as:
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gwc

gwc’

where gy ¢ represents the first configuration we solved for in reference to the world frame W, and
gwcr represents the second configuration, again in reference to the world frame V.

Following the arrows, we see that we can solve for the transformation that the end-effector under-
goes as:
_ -1
gocr = (gwe) ™ gwer

Plugging in our homogeneous coordinate for gy ¢ and gy ¢ yields:

goor = (gwe) Lawer

n N 2+ 3

o R v O | T

0 1 0 1

[ V3 1+v3
_ R R<—§>{21+ P }—R(—@) {f}

0 1
_|rep R<—§>{§°’/23}

2

0 1

[ - 0
- [R5 {2\/3}} = (0,-2v3,-7)

0 1

Question: Lastly, now consider that there’s an object in the end-effector’s grip. What would this
transformation (gocr) be for the object?

We can solve for this transformation using the adjoint transformation, which was defined in a

previous lecture as:
Adyg = hgh™*

This is also known as the adjoint transformation associated with A applied to g.
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In our case, consider the transformation from the end-effector to the object as:

IREY

0 1

which is illustrated by the following diagram:

which gives us the relationship:

gpp = h 'goorh = Ady-1 9o

Solving for this expression yields:

o= [y 4] [ Ll 14

- 0 1
7 _ _ 0 _ T _ pT
[ [ K& { o) ] gy [
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Solving separately for R(—m/3)d), yields:

v e | o BTV
{ 1/2 f/2} {1/4}
0

V3/2  1/2
~{ Vi)
Plugging this back in:
el H] e (S84

[ [ el
_[remm {Lo i sva) - {1{)4}]

0 1
_ —R(—ﬂ/?)) {(2+11//2)\/§}]

0 1

Thus, the object in the end-effector’s grip undergoes the transformation:

(—1/8,—(2+1/8)V/3, —7/3)



