
ECE 4560 Control for Locomotion Lecture 24

Topics Covered:

• Modeling Bipedal Robots

• Hybrid Systems

• Trajectory Generation

Additional Reading:

• Feedback Control of Dynamic Bipedal Robot Locomotion

• Models, feedback control, and open problems of 3D bipedal robotic walking

• Dynamic Walking: Toward Agile and Efficient Bipedal Robots

Note: This information will not be on the final exam.

Dynamic models for bipedal robots

Most bipedal systems are modeled as the following (image taken from Models, feedback control,
and open problems of 3D bipedal robotic walking):

with R0 being a fixed inertial frame, Rst being a frame attached to the stance foot, and Rb a frame
attached to the torso. There are two general methods for describing the states of this system: a
pinned model, and an unpinned model.

The pinned model assumes that the stance foot is “pinned” to the ground (i.e., the ground contact
is assumed to be satisfied). As long as this condition is held, then the full system states can be
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described by the joint angles and the position/orientation of the stance foot.

The unpinned model instead does not place any assumptions on the stance foot, but instead aug-
ments the system state to include information about the “floating-base frame”. This leaves us with
the augmented set of coordinates:

q = (p⊤b , ϕ
⊤
b , θ

⊤)⊤ ∈ Q = R3 × SO(3)× Rm

where pb ∈ R3 is the Cartesian position of frame Rb and orientation ϕb ∈ SO(3) of frame Rb with
respect to the fixed frame R0. Our joint angles (joint-space coordinates) are denoted as usual as
θ ∈ Rm.

Throughout lecture, we will be focusing on a specific robot model called RABBIT:

In this case, we have four joint angles:

θ = (θsh, θsk, θnsh, θnsk)
⊤

= (q1, q3, q2, q4)
⊤ (as shown in the figure above)

with the subscripts denoting stance hip, stance knee, nonstance hip, and nonstance knee. In the
planar case, the floating-base frame is represented as the x and y position of the torso, and the
orientation of the torso (denoted in the diagram as q5).

Continuous-Time Equations of Motion

As discussed in the last lecture, the continuous-time dynamics of the system can be modeled using
the standard robot equations of motion (obtained using the Lagrangian mechanics):

τ = M(q)q̈ +H(q, q̇)
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Except now, since all of our coordinates aren’t actuated, we will introduce an actuation matrix B
to only assign torque to the actuated coordinates:

Bu = M(q) +H(q, q̇)

In the scenario where the system is fully-actuated, B is simply the identity matrix. If instead we
used the pinned model for RABBIT, we would have: q = (q1, q2, q3, q4, q5)

⊤, with:

B =

[
I4×4

01×4

]
Next, we will use something called D’Alembert’s principle to model ground contact forces. Specif-
ically, we will augment our system with:

M(q)q̈ +H(q, q̇) = B(q)u+ δFext

M(q)q̈ +H(q, q̇) = B(q)u+ Jst(q)
⊤Fst

Here, δFext are any external forces acting on the robot. The contact force with the ground can then
be explicitly modeled using the Jacobian:[

vst
ωst

]
= Jst(q)q̇ ∈ RNc×1

Here, Nc is the number of contact constraints. For a planar foot, we have Nc = 3 (two forces
and one torque). For a planar point-foot we have Nc = 2 (two forces). For a full 3D planar foot,
we have Nc = 6 (three forces and three torques). Lastly, Fst represents the wrench applied at the
stance foot.

When considering the unpinned model, we can enforce the constraint that the stance foot is sta-
tionary by enforcing the kinematic constraint:

ηst(q) =

[
pst
ϕst

]
= constant

We typically call this constraint the holonomic constraint. When this constraint is enforced (the
position and orientation of the stance foot is constant), their velocity and acceleration should also
be zero, which can be enforced by the following:

Jst(q)q̇ = 0

Jst(q)q̈ + J̇st(q)q̇ = 0Nc×1

Friction Cone Constraints

There is a known relationship between the allowable forces on the stance foot and whether or not
the holonomic constraints will be satisfied. Thus, we can impose further constraints on the forces
applied to the stance foot. Specifically, we can enforce the friction cone constraints:√

(F fx
st )

2 + (F fy
st )

2 ≤ µF fz
st
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with µ being the coefficient of friction. This friction cone can be relaxed to a friction pyramid to
allow for linear constraints:

|F fx
st | ≤

µ√
2
F fz
st

|F fy
st | ≤

µ√
2
F fz
st

Lastly, even if the foot isn’t slipping, it could still tip. So to avoid tipping, we can enforce the zero
moment point constraint that forces the COP to lie within the support polygon of the foot:

−lbF
fz
st ≤ Fmx

st ≤ laF
fz
st

−LaF
fz
st ≤ Fmy

st ≤ LbF
fz
st

assuming the following foot geometry:

Discrete-Time Equations of Motion

We model the instantaneous change in the system velocity at impact the impact model. While
there are various ways to model this interaction, one way is to assume conservation of momentum
as proposed by Hurmuzlu and Marghitu

M(q)(q̇+ − q̇−) = Jst(q)
⊤Fimp

with Fimp being the integral of the impulsive contact wrench over the impact duration (typically
assumed to be very small), q̇− being the velocity just before impact, and q̇+ being the velocity just
after impact. This equation, combined with a kinematic constraint of the post-impact state:

J(q)q̇+ = 0

gives us our impact model: [
M(q) Jst(q)

⊤

Jst(q) 0

] [
q̇+

Fimp

]
=

[
M(q)q̇−

0

]
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Block matrix inversion yields the direct mapping:

q̇+ = (I −M−1J⊤
st(JstM

−1J⊤
st)

−1JstM
−1)︸ ︷︷ ︸

∆(q)

q̇− (dropped input (q) for notation)

q̇+ = ∆(q)q̇−

Note here that q is assumed to be the same pre and post-impact, but we could assign a relabeling
matrix such that we have q+ = Rq−. This would change our impact map to be:[

q+

q̇+

]
=

[
Rq−

R∆(q−)q̇−

]

Hybrid Systems

We can represent the combination of continuous-time dynamics and discrete-time dynamics as a
hybrid system. For notation, we will combine q and q̇ into a single state x = (q⊤, q̇⊤)⊤. We can
then represent our continuous-time dynamics as:

ẋ = f(x) + g(x)u[
q̇
q̈

]
=

[
q̇

−M(q)−1H(q, q̇)

]
+

[
0

M(q)−1B

]
u

Each node of the hybrid system contains continuous-time dynamics with a pre-defined set of
ground contact constraints. The transition between a node and the next is then governed by the
discrete-time dynamics of the impact model. We can enforce when to trigger the discrete transi-
tion as a switching (or impact) condition ϕ(x) When this condition is equal to zero, the system will
transition to the next node. Using this condition, we can represet the set of coordinates that are
satisfied when the condition is true as the sets belonging to a switching surface:

S = {x ∈ D | ϕ(x) = 0, ϕ̇ < 0}

Typically for walking, the switching condition is selected to be the height of the non-stance foot:
ϕ(x) = pznsf (x). This transforms our switching surface to be:

S = {x ∈ D | pznsf (x) = 0, ṗznsf < 0}

Finally, we can represent our hybrid system as:

HC =

{
ẋ = f(x) + g(x)u x ̸∈ S
x+ = ∆(x−) x− ∈ S

More complex hybrid systems can be constructed in situations where there are multiple contact
domains. For example, full “foot-rolling” walking can be captured by the following graph:
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Trajectory Generation

The goal of trajectory generation for bipedal robots is to synthesize a set of polynomials for the
controllable states of our system such that the full-order model remains periodically stable. To
do this, we pick a set of outputs (also called virtual constraints) y that we want to construct.
While these outputs can be any function of the state, they are commonly chosen to be the joint
angles/velocities. For RABBIT, we will choose the desired outputs to be:

yd(q) =


qd1
qd2
qd3
qd4


Our goal for control is then drive the outputs to zero, which is equivalent to driving the actual
outputs to the desired outputs:

y = yd − ya

Ensuring that this output is zero through control is why we often call it a virtual constraint.

Once equipped with our hybrid system model and our choice of virtual constraints, we can con-
struct a trajectory generation optimization problem to solve for the polynomials of the desired
outputs such that the following inequality and equality constraints are held:

Inequality Constraints

• The phasing variable ϕ is strictly increasing, ϕ̇ > 0 along the solution of each domain

• the solution respects the domain of admissibility (joint limits)

• positive vertical reaction force on the stance foot (no take off constraint)
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• friction constraints

• bounds on allowed actuator torques

• the swing foot is positioned above the ground (unless a double-support phase)

Equality Constraints

• conditions at the domain transitions impose periodicity

• desired walking speed

• other desired walking characteristics (step length, step duration, step height, step width)

Cost function

Typically, the cost function for this optimization problem is taken to be the norm of the control
input. However, one of the most well-behaved cost functions is the cost of transport which also
accounts for energy relative to the associated step length:

J =
1

SL

∫ T

0

∥u(t)∥22dt

Optimization Problem Formulation

Mathematically, we can write down this optimization problem as the following:

{α∗, X∗} = argmin
α,X

J(X)

subject to:
ẋ = f(x) + g(x)u∗(x) (Satisfies Closed-Loop Dynamics)
∆(y(x−)) = y(x+) (Periodic Condition)
Xmin ⪯ X ⪯ Xmax (Decision Variables)
cmin ≤ c(X) ≤ cmax (Physical Constraints)
amin ≤ a(X) ≤ amax (Feature Constraints)

where α∗ is our collection of polynomial coefficients for the desired outputs, and X = (x0, . . . , xN , T )
is the collection of all decision variables with xi being the state at the ith discretization of time and
T being the total duration of the trajectory.
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Methods for Trajectory Optimization

Since this optimization problem is nonlinear, it can be very challenging to solve. For an interesting
read about a few appraoches to solving these optimization problems, check out this blog post here.

For our appraoch to trajectory optimization, a past graduate student project was the development
of the FROST toolbox which constructs these hybrid system trajectory optimization problems in
MATLAB using IPOPT: Frost Website. I’ve also tried to document an example gait generation
setup for the RABBIT model (plus a version that has flat feet with actuated ankles) in the following
repository: rabbit opt example.
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