
ECE 4560 Introduction to Control Lecture 23

Topics Covered:

• Dynamics of Manipulators

• Equations of Motion

• Control

Additional Reading:

• Craig 6.8-6.9

• LP 8.1-8.2

Note about Adjoint Operations

Last lecture we derived the relationships:

Fa = Ad⊤
gba

Fb

which used our previous adjoint relationship for twists:

ξa = Adgabξb

Note that in general, we have the following relationships for adjoints:

Adg−1 = Ad−1
g = [Adg]

−1

AdT
g = [Adg]

T ̸= AdgT

[Adg1 ][Adg2 ] = [Adg1g2 ]

The following is an overview about Adjoint Operations:

First, our adjoint operation for Lie groups is:

gtt′ = Adgtegee′

= gtegee′g
−1
et (g−1 =

[
RT −RTd
0 1

]
)

= Adg−1
et
gee′

= (g−1
et )gee′(g

−1
et )

−1

= g−1
et gee′get

= Ad−1
getgee′

1



ECE 4560 Introduction to Control Lecture 23

Second, the adjoint operation for twists is:

ξs = Adgseξe

= (gseξ̂eg
−1
se )

∨

= [Adgse ]ξe

=

[
Rse [dse]×Rse

0 Rse

]

ξt = Adgteξe

= Adg−1
et
ξe

= ((g−1
et )ξ̂e(get))

∨

= [Adget ]
−1ξe

=

[
R⊤

et [−R⊤
etdet]×R

⊤
et

0 R⊤
et

]

Lastly, the adjoint operation for wrenches is:

Fe = Ad⊤
gteFt

Fs = Ad⊤
gtsFt

= [Adgts ]
⊤Ft

=

[
R⊤

ts 0
([dts]×Rts)

⊤ R⊤
ts

]
Ft

=

[
R⊤

ts 0
R⊤

ts[−dts]× R⊤
ts

]
Ft

Note that we can use the property [R⊤d]× = R⊤[d]×R to observe that the components of [Adg]
⊤

are similar to those of [Adg]
−1, but not identical.

2



ECE 4560 Introduction to Control Lecture 23

Dynamics of Manipulators

So far in the course, we have only discussed kinematic models of manipulators. These models
relate joint position/motion to end-effector position/motion.

This was visualized by the diagram:

positions =

{
forward kinematics
inverse kinematics

, velocities =

{
Jb(θ), Js(θ)

J†
b (θ), J

†
s (θ)

But what about accelerations?? Well that will be the focus of this lecture.

Aside: We’re not going to talk about the left-hand side of this diagram. These arrows deal with
the control of servomechanics and linear actuators. This is more of a classic control problem; how
do we realize a desired torque or linear force using a given motor?.

We are interested in what happens if we consider the second derivative of the red arrows:

By dynamics of a manipulator, we mean how the manipulator moves in response to actuator forces.
By control of a manpulator, we mean how to generate actuator forces to achieve desired motion.

3



ECE 4560 Introduction to Control Lecture 23

1. Dynamics

• Equations of Motion

• Lagrangian mechanics

2. Control

• Position control

• Force control

Equations of Motion

The dynamic equations associated with robot dynamics are referred to as the equations of motion
and are a set of second-order differential equations of the form:

τ = M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ)︸ ︷︷ ︸
h(θ,θ̇)

where θ = Rn is the vector of joint angles, τ = Rn is the vector of joint torques (and forces if
linear actuators), M(θ) = Rn×n is a symmetric positive-definite mass matrix, C(θ, θ̇) = Rn×n

is the Coriolis matrix, and G(θ) = Rn is the gravity vector. As shown, the Coriolis matrix and
the gravity vector are often lumped together into a generalized vector h. As stated in LP, these
expressions can be “extraordinarily complex” despite their simple form.

Similar to our notion of forwards and inverse kinematics, we have notions of forwards and inverse
dynamics:

forwards dynamics: θ̈ = M−1(θ)(τ − h(θ, θ̇))

inverse dynamics: τ = M(θ)θ̈ + h(θ, θ̇)

There are two typical ways to derive these dynamic equations:

1. Newton-Euler formulation

2. Lagrangian dynamics formulation

Lagrangian Formulation

4



ECE 4560 Introduction to Control Lecture 23

Definition: Lagrangian function

A Lagrangian function L(θ, θ̇) is defined as the overall system’s kinetic energy K(θ, θ̇) mi-
nus the potential energy P(θ):

L(θ, θ̇) = K(θ, θ̇)− P(θ)

This formulation allows us to derive a system’s equations of motion in terms of the Lagrangian:

τ =
d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ

with τ ∈ Rn being the generalized forces acting on the system (in joint-space).

Example

Consider the two-link planar manipulator that we’ve been working with.

We can use our forward kinematics to solve for the position and velocity of each mass. First, for
the first mass: [

x1

y1

]
=

[
L1 cos θ1
L1 sin θ1

]
,

[
ẋ1

ẏ1

]
=

[
−L1 sin θ1
L1 cos θ1

]
θ̇1

Now, for the second mass:[
x2

y2

]
=

[
L1 cos θ1 + L2 cos(θ1 + θ2)
L1 sin θ1 + L2 sin(θ1 + θ2)

]
,[

ẋ2

ẏ2

]
=

[
−L1 sin θ1 − L2 sin(θ1 + θ2) − sin(θ1 + θ2)
L1 cos θ1 + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

] [
θ̇1
θ̇2

]

The Lagrangian is then of the form:

L(θ, θ̇) = (K1 − P1) + (K2 − P2)

5



ECE 4560 Introduction to Control Lecture 23

where kinetic energy is captured by the formula K = 1
2
mv2 and potential energy is the formula

P = mgh. Specifically, for our masses, we have the following kinetic energy terms:

K1 =
1

2
m1(ẋ

2
1 + ẏ21)

=
1

2
m1L

2
1θ̇

2
1

K2 =
1

2
m2(ẋ

2
2 + ẏ22)

=
1

2
m2

(
(L2

1 + 2L1L2 cos θ2 + L2
2)θ̇

2
1 + 2(L2

2 + L1L2 cos θ2)θ̇1θ̇2 + L2
2θ̇

2
2

)
Lastly, our potential energy terms are:

P1 = m1gy1

= m1gL1 sin θ1

P2 = m2gy2

= m2g(L1 sin θ1 + L2 sin(θ1 + θ2))

The individual equations of motion for each joint can be represented as:

τi =
d

dt

(
∂L
∂θ̇i

)
− ∂L

∂θi

Thus, plugging in our terms for the Lagrangian, and taking the partial derivatives yields:

τ1 = (m1L
2
1 +m2(L

2
1 + 2L1L2 cos θ2 + L2

2))θ̈1 +m2(L1L2 cos θ2 + L2
2)θ̈2

−m2L1L2 sin θ2(2θ̇1θ̇2 + θ̇22) + (m1 +m2)L1g cos θ1 +m2gL2 cos(θ1 + θ2),

τ2 = m2(L1L2 cos θ2 + L2
2)θ̈1 +m2L

2
2θ̈2 +m2L1L2 sin θ2θ̇

2
1 +m2gL2 cos(θ1 + θ2)

We can rewrite these equations to match the general form:

τ = M(θ)θ̈ + c(θ, θ̇) + g(θ)︸ ︷︷ ︸
h(θ,θ̇)

τ =

[
τ1
τ2

]
=

[
m1L

2
1 +m2(L

2
1 + 2L1L2 cos θ2 + L2

2) m2(L1L2 cos θ2 + L2
2)

m2(L1L2 cos θ2 + L2
2) m2L

2
2

] [
θ̈1
θ̈2

]
+[

−m2L1L2 sin θ2(2θ̇1θ̇2 + θ̇22)

m2L1L2 sin θ2θ̇
2
1

]
+[

(m1 +m2)L1g cos θ1 +m2gL2 cos(θ1 + θ2)
m2gL2 cos(θ1 + θ2)

]
6



ECE 4560 Introduction to Control Lecture 23

Control

Feedforward Control

As mentioned earlier, one method for controlling a manipulator is to design the desired motions
in terms of position, velocity, and acceleration, and then calculate the necessary torques to achieve
these motions using our equations of motion. This is known as feedforward control and has the
following pseudocode:

time = 0 // dt = cycle time
loop

[qd, qdotd, qdotdotd] = trajectory(time) // trajectory gen.
tau = M(qd)*qdotdotd + C(qd, qdotd)*qdotd + G(qd) // calculate dynamics
commandTorque(tau)
time = time + dt

end loop

Feedback Control

Since our equations of motion are often complex and inaccurate, we can use feedback control to
correct for these inaccuracies. This is done by measuring the actual joint angles and velocities,
and then using a PID controller to generate the necessary torques to correct for any errors. This is
known as feedback control and has the following pseudocode:

time = 0 // dt = cycle time
eint = 0 // integral error
qprev = readJointAngles() // init. joint angle q
loop

[qd, qdotd] = trajectory(time) // trajectory gen.
q = readJointAngles() // read joint angle q
qdot = (q-qprev)/dt // calculate joint vel
qprev = q

e = qd - q // position error
edot = qdotd - qdot // velocity error
eint = eint + e*dt // integral error

tau = Kp*e + Ki*eint + Kd*edot // PID control
commandTorque(tau)

time = time + dt
end loop

PID control is extremely common in the field of robotics research, and is summarized by the

7



ECE 4560 Introduction to Control Lecture 23

following torque law:

τ = Kpe+Ki

∫
e(t)dt+Kdė

with the error dynamics:

e = qd − q, ė = q̇d − q̇

Here, Kp, Kd and Ki are positive control gains. The proportional gain Kp acts as a virtual spring
that pulls the system towards the desired position, the derivative gain Kd acts as a virtual damper
that reduces the velocity error, and the integral gain Ki acts as a virtual integrator that corrects for
steady-state errors.

There is a large literature of work that explores how to select these three gains to avoid overshoot,
oscillations, and other undesirable behaviors. In general, the tuning procedure is as follows:

8


