
ECE 4560 Trajectory Design 4 Lecture 21

Topics Covered:

• Note on Adjoint Operation for Twists

• Group vs Joint Space Planning

• Straight-Line Paths

Additional Reading:

• LP Chapter 9

Timeline for the rest of the semester:

1. Today: Last Lecture on Trajectory Design

2. Thursday, November 13th: Wrenches and Forces

3. Tuesday, November 18th: Introduction to Control

4. Thursday, November 20th: Group Presentations

5. Tuesday, November 25th: Dynamics + Control for Manipulators (Not on final exam)

6. Thursday, November 27th: Thanksgiving

7. Tuesday, December 2rd: Final Exam Review

Review of Point-to-Point Trajectory Design

Assume that we only want to move from joint configuration θ⃗i to θ⃗f over time t ∈ [0, T ]. Here we
will use cubic polynomials to create smooth position and velocity profiles:

1. Define starting and ending configuration θ⃗i = θ⃗(0) and θ⃗f = θ⃗(T ) with θ⃗ = (θ1, θ2, . . . , θm)T .

2. Define starting and ending joint velocity (only used if we are stitching together multiple

configurations: ⃗̇θi and ⃗̇θf .

3. Solve for polynomial coefficients for each joint j:

aj0 = θji

aj1 = 0

aj2 =
3

T 2
(θjf − θji )−

1

T
(2θ̇ji + θ̇jf )

aj3 =
−2

T 3
(θjf − θji ) +

1

T 2
(θ̇ji + θ̇jf )

1



ECE 4560 Trajectory Design 4 Lecture 21

4. Use these coefficients to define θ∗(t) and θ̇∗(t) using a cubic polynomial:

θ∗j(t) = aj0 + aj1t+ aj2t
2 + aj3t

3

θ̇∗j(t) = aj1 + 2aj2t+ 3aj3t
2

Review of Straight-Line Path Trajectory Design with Inverse Kinematics

To achieve straight-line paths in either joint space or task space, we will need to use a time-scaling
function to parameterize the straight-line path. The procedure is then as follows:

1. Define starting and ending pose gi = g∗e(0) and gf = g∗e(T )

2. Define the time-scaling function s(t) as a cubic polynomial with boundary conditions:

s(t) = a0 + a1t+ a2t
2 + a3t

3

ṡ(t) = a1 + 2a2t+ 3a3t
2

a0 = 0, a1 = 0, a2 =
3

T 2
, a3 =

−2

T 3

t

s(t)

T

1

t

ṡ(t)

T

3
2T t

s̈(t)

T

6
T 2

3. Then, we can obtain the desired end-effector path using either a “straight-line” with a con-
stant screw motion (fixed screw axis)

g(s(t)) = gi exp(ln(g
−1
i gf )s)

This provides a ”straight-line” in thes ense that the screw axis is constant. If we want a true
straight-line in position space, we must decouple rotation and translation as:

p(s(t)) = (1− s)pi + spf

R(s(t)) = Ri exp(ln(R
T
i Rf )s)

2



ECE 4560 Trajectory Design 4 Lecture 21

Note that in both cases we CANNOT simply do:

g(s(t)) = (1− s)gi + sgf

since this may not produce a valid SE(3) transformation (most likely, R(s) will lose its
orthonormality)

4. Perform inverse kinematics at each time step to solve for θ∗(t)

5. Use ξs = ġ(t)g(t)−1 to compute θ̇∗(t) using the inverse/pseudo-inverse of the spatial manip-
ulator Jacobian:

θ̇∗(t) = (Js(θ(t)))
†ξs(t)

Review of Resolved Rate Trajectory Design (No Inverse Kinematics)

In general, we have so far introduced the following methodology:

1. Start with g∗e(t) which either we can vectorize, or assume we are given a collection of way-
points:

g∗e(tk) for k = 0, 1, . . . , n+ 1

2. Use the logarithm to solve for ξ∗e (tk)
∗:

(ξ∗e (tk))
b = ln∆t(grel)

= ln∆t(g
−1(tk)g(tk+1)) (gab = g−1

sa gsb)
= logm(g−1(tk)g(tk+1))/∆t

(ξ∗e (tk))
s = Adg(tk)(ξ

∗
e (tk))

b

= Adg(tk) ln∆t(g
−1(tk)g(tk+1))

= g(tk)logm
(
g−1(tk)g(tk+1)

)
(g(tk))

−1 /∆t

= logm
(
g(tk+1)g(tk)

−1
)
/∆t (Is this true?)

3



ECE 4560 Trajectory Design 4 Lecture 21

3. Option 1: Use inverse kinematics (can be closed-form algorithm, iterative such as Newton-
Raphson, or optimization-based) to solve for θ∗(tk).

4. Option 2: Use resolved-rate to solve for θ∗(tk):

θ(tk+1) = θ(tk) + ∆t(J b(θ(tk)))
†(ξ∗e (tk))

b

5. Use the same Pseudo-Inverse to solve for Joint-Velocity:

θ̇(tk) = (J b(θ(tk)))
†(ξ∗e (tk))

b

6. Use these waypoints to construct cubic polynomials for θ∗(t) and θ̇∗(t) to get a smooth
trajectory.

7. Track θ(t) and θ̇(t) with a controller. For example, our MuJoCo simulations use a PD con-
troller:

u⃗(t) = Kp(θ
∗(t)− θ(t)) +Kd(θ̇

∗(t)− θ̇(t))

Fifth-Order (Quintic) Splines

If we want to ensure smooth acceleration profiles as well, we can use fifth-order (quintic) splines.
This requires us to introduce two additional boundary conditions on acceleration:

θ̈(0) = θ̈i

θ̈(T ) = θ̈f

This results in a fifth-order polynomial of the form:

θ∗(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

with the polynomial coefficients given by:

aj0 = θji

aj1 = 0

aj2 = 0

aj3 =
10

T 3
(θjf − θji )

aj4 = − 15

T 4
(θjf − θji )

aj5 =
6

T 5
(θjf − θji )

4



ECE 4560 Trajectory Design 4 Lecture 21

This also applies to straight-line paths in which we can define a quintic time-scaling function s(t)
with boundary conditions on position, velocity, and acceleration at t = 0 and t = T . This gives us
the coefficients:

aj0 = 0

aj1 = 0

aj2 = 0

aj3 =
10

T 3

aj4 = − 15

T 4

aj5 =
6

T 5

which produces the curves: Of course, this too has it’s drawbacks. Namely, there will be infinite

t

s(t)

T

1

t

ṡ(t)

T

15
8T

t

s̈(t)

T

10
T 2

√
3

“snap” (derivative of jerk) due to a discontinuity at the endpoints of the jerk profile.

Waypoint Planning

When planning trajectories through multiple waypoints, we can use either cubic or quintic splines
to connect each segment. For cubic splines, we can set the velocity at each intermediate waypoint
to zero, or we can set it to the average velocity between the two segments. Consider the following
example:

5



ECE 4560 Trajectory Design 4 Lecture 21

Here, example a uses the waypoints at (0, 0), (0, 1) (1, 1), and (1, 0) with velocities (0, 0), (1, 0),
(0, 1), and (0, 0). Example b uses the same waypoints but the velocities (0, 0), (1, 1), (1,−1), and
(0, 0). Here, our cubic splines between waypoints will be represented as:

p∗(t) = a0 + a1t+ a2t
2 + a3t

3

with t defined over each segment [tk, tk+1] and recentered to lie on the interval [0, Tk] where Tk =
tk+1 − tk.

6


