
ECE 4560 Planar Kinematics - Coordinates and Rotations Lecture 2

Topics Covered:

• Rotation Matrices

• Change of Coordinate Frames

• Multiple Displacements

Additional Reading:

• Lynch, K.M. and Park, F.C. Modern Robotics: Section 3.2

• Craig, J.J. Introduction to Robotics: 2.3

• Murray et al. A Mathematical Introduction to Robotic Manipulation: Chapter 2,
Section 2.1

Review

Last class we went over how to describe the configuration of a rigid body. We determined that we
need 3 degrees of freedom to describe planar transformations: x, y, and θ.

We ended the last class with the 3DOF example:

Configuration of a rigid body:

g = (x, y, θ)⊤ (Vector Notation)

or equivalently:

g = (x, y, R(θ))

g = (d⃗, R(θ))

g = (d⃗, θ)

Note: R(θ) :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

In todays class, we will go over how to represent both configurations and transformations using
rotation matrices.
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Rotation Matrices

While it is technically simple and sufficient to represent the configuration of a planar body using
only position and orientation of the body frame with respect to the fixed frame, this will become
cumbersome when we move to three-dimensional space where we need a set of three angles to de-
scribe orientation. However, in three-dimensional space, it will be more straightforward to express
the directions of the coordinate axes of the body frame in terms of coefficients of the coordinate
axes of the reference frame.

This is illustrated in the following diagram:

This can be conceptualized as a transformation of basis vectors:

x⃗A
B =

[
cos(θ)
sin(θ)

]
, y⃗AB =

[
− sin(θ)
cos(θ)

]

Using this basis transformation to transform (via pure rotation) points results in our canonical
rotation matrix:

p′ =

[
x′

y′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
︸ ︷︷ ︸

R(θ)

[
x
y

]

The previously motivated transformation with both a displacement and a rotation can now be com-
puted using the rotation matrix as:

p⃗A
B = d⃗ +R(θ)p⃗A

There’s two additional observations to make. The first is that the coordinates (d⃗, R(θ)) can be used
to describe either a configuration or a transformation.
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• If d⃗BC = 0, then the transformation is a pure rotation.

• If θBC = 0 or R(θAB) = 1, then the transformation is a pure translation.

The second observation is that we can translate between a matrix representation of our rotations
and a rotation angle using the relationship:

R =

[
R11 R12

R21 R22

]
θ = atan2(R21, R11)

Properties of Rotation Matrices

A rotation matrix is a special type of matrix that encodes a rotation in space, transforming vectors
without changing their length or the angles between them. These matrices form a group under
multiplication, meaning that combining rotations, doing nothing, or undoing a rotation all result in
another valid rotation matrix. We will unpack this statement in this section.

Overall, rotation matrices have two important properties:

• R⊤R = I (unit axes are orthogonal)

• detR = 1 (rotations follow the right-hand rule, i.e. x⃗× y⃗ = z⃗)

The first property stems from two conditions placed on our derivation of the rotation matrix: a
unit norm condition specifying that the coordinate axes are represented by unit vectors, and an
orthogonality condition on the unit axes. Together, these four constraints (2 for the unit norm axes
and 2 for the orthogonality conditions) can be represented by the single constraint R⊤R = I .

The second property is a result of the fact that the rotation matrix is right hande (i.e., x⃗× y⃗ = z⃗).

Due to these properties, rotation matrices can be mathematically classified as a special orthogonal
group SO(2). This is called a “group” because it satisfies the properties required of a mathematical
group.

Definition: Group

A group is a set of elements G = {a, b, c, . . .} with a binary operation · that satisfies the
following properties:

closure a · b ∈ G for all a, b ∈ G
associativity (a · b) · c = a · (b · c))
identity element exists there is an I ∈ G such that a · I = I · a = a for each a ∈ G
inverse exists for each a ∈ G there exists a−1 ∈ G such that a · a−1 = a−1 · a = I

For the special orthogonal group SO(2), the group operation is matrix multiplication, and the
following group properties are:
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closure R1R2 ∈ SO(2)
associativity (R1R2)R3 = R1(R2R3)
identity element exists I ∈ SO(2)
inverse exists matrix inverse R−1 = R⊤

Proofs of these properties are as follows.

Properties of the special orthogonal group SO(2):

Proposition 1. The inverse of a rotation matrix R ∈ SO(2) is also a rotation matrix, and it
is equal to the transpose of R, i.e., R−1 = R⊤.

Proof. The condition R⊤R = I implies that R⊤ = R−1 and RR⊤ = I . Since detR⊤ =
detR = 1, R⊤ is also a rotation matrix.

Proposition 2. The product of two rotation matrices is a rotation matrix

Proof. Given R1, R2 ∈ SO(2), their product R1R2 satisfies (R1R2)
⊤R1R2 =

R⊤
2 R

⊤
1 R1R2 = R⊤

2 R2 = I . Also, detR1R2 = detR1 · detR2 = 1. Thus, R1R2 satis-
fies both conditions for a rotation matrix.

Proposition 3. Multiplication of rotation matrices is associative, i.e., for R1, R2, R3 ∈
SO(2), (R1R2)R3 = R1(R2R3).

Proof. Matrix multiplications are associative.

Proposition 4. For any vector x ∈ R2 and R ∈ SO(2), the vector y = Rx has the same
length as x.

Proof. This follows from:

∥y∥2 = y⊤y = (Rx)⊤Rx = x⊤R⊤Rx = x⊤x = ∥x∥2

Later in the course we will see that these same properties hold for the special group of rotation
matrices for three-dimensional transformations, called the special orthogonal group SO(3). The
only property that differs for rotation matrices in higher do,emsopms os that the rotation matrices
are not generally commutative (i.e., R1R2 ̸= R2R1).

Uses of Rotation Matrices

There are three major uses for a rotation matrix R:

1. to represent an orientation: RAB represents the orientation of frame B w.r.t. frame A

2. to rotate a vector or a frame: Given some rotation matrix R, p′ = Rp

3. to change the reference frame in which a vector or a frame is represented
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Notation

For the sake of consistent notation moving forward, we will define and use the following:

• x̂A: the unit vector in the x direction of frame A

• ŷA: the unit vector in the y direction of frame A

• gAB: the transformation from frame A to frame B

• d⃗AAB: the displacement from frame A to frame B in reference to frame A

• R(θAB): the rotation matrix that rotates a point by θAB radians, with θAB being the angle
from frame A to frame B

• p⃗A
B: a point p in frame B that is represented in frame A

• v⃗: general vector notation for some variable v

Multiple Displacements

Now, what about multiple displacements?

Consider the following example:

So far, we have only considered the transformation of a point from one frame to another. For
example, in this example:

pC in frame B is pBC = d⃗BBC +R(θBC)p⃗

pB in frame A is pAB = d⃗AAB +R(θAB)p⃗
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But what if we want to find pC in frame A? We can use the following relationship:

pAC = d⃗AAB +R(θAB)p
B
C

= d⃗AAB +R(θAB)
(
d⃗BBC +R(θBC)p⃗

)
= d⃗AAB +R(θAB)d⃗

B
BC +R(θAB)R(θBC)p⃗

We can write this multiple transformation in vector coordinate form as:

gAC = gAB · gBC

= (d⃗AAB, R(θAB)) · (d⃗BBC , R(θBC))

= (d⃗AAB +R(θAB)d⃗
B
BC︸ ︷︷ ︸

d⃗AAC

, R(θAB)R(θBC)︸ ︷︷ ︸
R(θAC)

)
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