
ECE 4560 Trajectory Design 2 Lecture 19

Topics Covered:

• Joint vs. Group Space Planning

• Straight-Line Paths

• Multiple Waypoints w/ Desired Velocities

Additional Reading:

• LP Chapter 9

• Craig Chapter 7

Review

So far we have covered how to:

1. convert two joint configurations (θi and θf ) to a sufficiently smooth curve, described using a
polynomial of the appropriate degree.

2. choose the duration of the trajectory (in time) to satisfy actuation limits.

Reasons to complicate this further:

• if we want the desired end-points to be specified in the end-effector group space (not joint
space)

• if the workspace has obstacles, need to ensure that they are avoided

• other workspace constraints such as actuation limits and joint limits that further restrict the
space of feasible trajectories

1



ECE 4560 Trajectory Design 2 Lecture 19

Discussion of Joint Space vs. Group (Task) Space

Below is an example from Lynch/Park Section 9.2 that illustrates the difference between planning
a straight-line path in joint-space versus in the group (or they call it task) space:

Pros Cons

Joint Space Planning Simpler to compute
Joint limits are easier to obey

May result in complex end-effector
paths that are hard to predict

Group Space Planning Ensures end-effector follows
desired path in Cartesian space

More computationally intensive
Requires solving inverse kinematics

Table 1: Comparison of Joint Space vs. Group Space Planning

2



ECE 4560 Trajectory Design 2 Lecture 19

Group Space Trajectories

Question: Given a trajectory in task space (g∗e(t) ∈ SE(3)), how can we find the corresponding
desired joint angles to send to achieve this path (i.e., θ∗(t) such that g∗e(t) = ge(θ

∗(t)))?

Answer: One approach is to “spline” together the inverse kinematics solution for a set of way-
points/knotpoints to get a candidate joint trajectory.

1. solve an inverse kinematics problem for each g∗(tk) to get θ∗(tk) for t0, t1, . . . , tn where n =
total waypoints

2. interpolate/concatenate smooth trajectories θ∗(t) through the θ∗(tk).

In this approach, we need to be aware of inverse kinematics solutions, since they may not be
unique; could lead to joint configuration flip-flopping.

Let’s assume that step 1 is done (we have θ∗(tk) for t0, t1, . . . , tn). Let’s consider how to interpo-
late/concatenate these trajectories.

Straight-Line Paths

If we want a straight-line path, we will run into the previously mentioned issues with vibrations
caused from instantaneous changes in velocity. So, to avoid these vibration issues, we can instead
define our polynomial over our time-scaling function s(t) that maps your time interval [ti, tf ] to
[0, 1], i.e., s : [ti, tf ] → [0, 1].

s(t) = a0 + a1t+ a2t
2 + a3t

3

with the constraints:

s(0) = 0, ṡ = 0, s(T ) = 1, ṡ(T ) = 0. (T = tf − ti)

Note: time-scaling can also just be used with polynomials over p(t), but here the choice of s(t)
could be linear:

s(t) =
t− ti
tf − ti

But, using our polynomial function s(t), a twice-differentiable “straight-line” path can be created
as the convex combination between two points pi and pf :

p(s) = (1− s)pi + spf

= pi + s(pf − pi)

3



ECE 4560 Trajectory Design 2 Lecture 19

This procedure still gives us a twice-differentiable path with the coefficients:

a0 = 0, a1 = 0, a2 = 3/T 2, a3 = −2/T 3

Using this time-scaling, we can now define our straight-line path as the convex combination of two
points pi and pf . For straight-line paths in the joint space, this is:

θ(s) = θi + s(θf − θi), s ∈ [0, 1]

with the velocity:

θ̇(s) = ṡ(θf − θi)

= (a1 + 2a2t+ 3a3t
2)(θf − θi)

=

(
6t

T 2
− 6t2

T 3

)
(θf − θi)

A straight-line path in group space g = (R, p) ∈ (SE(3)) is a bit more complicated since:

g(s) = gi + s(gf − gi)

does not generally lie in SE(3). In other words, this convex combination does not necessarily
follow the physical laws of motion. Instead, we must use our previous knowledge about tranfor-
mations to derive our path:

gif = g−1
wi gwf

with i being the initial frame, f being the final frame, and w being the world (or spatial) frame. We
can then use our exponential map to obtain specific configurations along this path. This is done by
first noting that the twist associated with this transformation is:

ξ = ln(g−1
wi gwf ),

so taking the exponential map gives us:

g(s) = gwi︸︷︷︸
g∗i

exp(ln(g−1
wi gwf︸︷︷︸

g∗f

)s).

Finally, we can construct g(s) by individually constructing paths for the Cartesian position and the
rotation:

p(s) = pi + s(pf − pi)

R(s) = Ri exp(ln(R
T
i Rf )s)

Using this method, the full procedure for generating a straight-line path in group space is:

4



ECE 4560 Trajectory Design 2 Lecture 19

1. Start with gi and gf .

2. Obtain your cartesian path and rotation path p(s) and R(s) from gi and gf .

3. Obtain your scaling function s(t) as a cubic polynomial.

4. Conduct inverse-kinematics at either waypoints or continuously along g(s).

5. Interpolate/move along θ∗(s) and θ̇∗(s).

Connecting Waypoints

If we connect cubic splines between each pair of adjacent way points, we get a trajectory that
connects the initial and final configurations with a series of cubics with zero velocity conditions.
While this works, the trajectory is not ideal since it slows down at each waypoint.

Instead, we can achieve non-trivial velocities at waypoints by constraining the end-points of each
spline. These constraints generalize to:

p(0) = pi p(tf ) = pf

ṗ(0) = ṗi ṗ(tf ) = ṗf

5



ECE 4560 Trajectory Design 2 Lecture 19

This leads to the general problem from the last lecture:
1 0 0 0
1 tf t2f t3f
0 1 0 0
0 1 2tf 3t2f


︸ ︷︷ ︸

A(tf )


a0
a1
a2
a3

︸ ︷︷ ︸
a⃗

=


pi
pf
ṗi
ṗf

︸ ︷︷ ︸
p⃗0

a0
a1
a2
a3

︸ ︷︷ ︸
a⃗

=


1 0 0 0
0 0 1 0

−3/t2f 3/t2f −2/tf −1/tf
2/t3f −2/t3f 1/t2f 1/t2f


︸ ︷︷ ︸

P (tf )


pi
pf
ṗi
ṗf

︸ ︷︷ ︸
p⃗0

Explicitly, this is

a0 = pi a2 =
3

t2f
(pf − pi)−

2

tf
ṗi −

1

tf
ṗf

a1 = ṗi a3 =
2

t3f
(pi − pf ) +

1

t2f
(ṗi + ṗf )

Here, we would obtain ṗi and ṗf from the specification of our desired trajectory.

Solving for Coefficients of Multiple Waypoints

Next, we will further explore how to systematically determine the polynomials that connect mul-
tiple waypoints with matching velocity. In this setting, we will assume that we are given the
following desired features:

• p0, p1, . . . , pn, pn+1 (initial, intermediate, and final positions)

• 0, ṗ1, . . . , ṗn, 0 (initial, intermediate, and final velocities)

• 0, t1, . . . , tn, tf time points

• T0, T1, · · · , Tn−1, Tn (durations of each segment, with Tk = tk+1 − tk and Tn = tf − tn)

Using a similar approach as before, we can construct n + 1 polynomials, each of which has the
form:

pk(τ) = ak0 + ak1τ + ak2τ
2 + ak3τ

3.

with the input τ being defined on the range for that waypoint segment τ = [0, Tk].

6



ECE 4560 Trajectory Design 2 Lecture 19

We can then represent the complete polynomial as:

p(t) = pk(t− tk) where k = floor(t/T )

assuming that T0 = T1 = · · · = Tn = T . If any Tk are different, then we would instead need to
find k such that t ∈ [tk, tk+1].

To actually solve for the coefficients of each polynomial, we can set up a large system of equations
with matching velocity constraints:

p0(0) = a00 = p0

p0(T0) = a00 + a01T0 + a02T
2
0 + a03T

3
0 = p1

ṗ0(0) = a01 = 0(= ṗ0)

ṗ0(T0) = a01 + 2a02T0 + 3a03T
2
0 = ṗ1

...
...

pk(0) = ak0 = pk

pk(Tk) = ak0 + ak1Tk + ak2T
2
k + ak3T

3
k = pk+1

ṗk(0) = ak1 = ṗk

ṗk(Tk) = ak1 + 2ak2Tk + 3ak3T
2
k = ṗk+1

...
...

pn(0) = an0 = pn

pn(Tn) = an0 + an1Tn + an2T
2
n + an3T

3
n = pn+1

ṗn(0) = an1 = ṗn

ṗn(Tn) = an1 + 2an2Tn + 3an3T
2
n = 0(= ṗn+1)

Solving for the coefficients of each polynomial is decoupled, so we can use the same solution as
introduced for the “individual” polynomial case. In code, we would use a for loop to loop through
each polynomial segment. Below are two different MATLAB examples. The first shows how we
oculd code up what we’ve presented so far. The second shows how you can use MATLAB built-in
functions to create and evaluate splines.

However! Connecting in this way only matches velocities. It does not match accelerations yet. If
we wanted to also constrain matching accelerations, we would have to add constraints on p̈k(Tk)−
p̈k+1(0) = 0.

7



ECE 4560 Trajectory Design 2 Lecture 19

Example MATLAB Code

1 %% Method 1 - Define your polynomial
2 pvec = [0, 2, 0, 2, 0];
3 pdotvec = [0, 0, 0, 0, 0];
4 tvec = [0, 1, 2, 3, 4];
5

6 % Define matrix P
7 P = @(tf) [1 0 0 0; ...
8 0 0 1 0; ...
9 -3/tfˆ2 3/tfˆ2 -2/tf -1/tf; ...

10 2/tfˆ3 -2/tfˆ3 1/tfˆ2 1/tfˆ2];
11

12 amat = zeros(4,length(pvec)-1);
13 for i = 1:length(pvec)-1
14 pi = pvec(i);
15 pf = pvec(i+1);
16 vi = pdotvec(i);
17 vf = pdotvec(i+1);
18 p0 = [pi; pf; vi; vf];
19

20 tf = tvec(i+1) - tvec(i);
21 Pcur = P(tf);
22

23 a0 = Pcur*p0;
24 amat(i,:) = a0’;
25

26 end
27

28 % Convert the coefficients into the order that polyval wants
29 amat = fliplr(amat);
30

31 % Evaluate polynomial using
32 figure(1); clf; hold on;
33

34 for i = 1:length(pvec)-1
35 % Have to flip the order of coefficients based on how polyval is
36 % defined:
37 fplot(@(t) polyval(amat(i,:), t-tvec(i)),[tvec(i),tvec(i+1)])
38 end

8



ECE 4560 Trajectory Design 2 Lecture 19

Example MATLAB Code

1 %% Alternative method using csape (cubic spline
2 % Define the x-values and corresponding y-values (positions)
3 pvec = [0, 2, 0, 2, 0];
4 tvec = [0, 1, 2, 3, 4];
5

6 % Define velocity constraints at the endpoints
7 % Velocity at x = 0
8 v_start = 0;
9 % Velocity at x = 4

10 v_end = 0;
11

12 % Create a cubic spline with velocity constraints at the endpoints
13 pp = csape(tvec, [v_start, pvec, v_end], ’clamped’);
14

15 % Plot the spline
16 xx = linspace(min(tvec), max(tvec), 100);
17 yy = ppval(pp, xx); % Evaluate the spline at these points
18 figure(2)
19 plot(tvec, pvec, ’o’, xx, yy, ’-’);
20 xlabel(’p’);
21 ylabel(’t’);
22 title(’Cubic Spline with Velocity Constraints’);

9


