ECE 4560 Jacobians - Singularity Analysis Lecture 17

~

Topics Covered:
* Manipulator Types
* Examples

Additional Reading:

* LP5.3;

Review

So far, we’ve introduced manipulator Jacobians and several ways to compute them. Today we will
be discussing how the Jacobian relates to singularities for various manipulator “types”.

Manipulator Types (based on Workspace)

Note: this description of manipulator types is more functional, less geometric than before.
Let n = dimension of task space, m = dimension of joint space. In this case, J € R™"*™,

The three (functional) classes to describe a given manipulator are:

1. kinematically insufficient (n > m)

* can get a “better” manipulator so that m = n.

* can reduce dimension of task space by redefining what the task is.
2. kinematically redundant (n < m)

* have more degrees of freedom than needed (Inverse kinematics have infinite solutions).

* it’s tricky, but this case can be dealt with.
3. kinematically sufficient (n = m)

* need to ensure operation in dextrous workspace for maximal mobility/control.

* equivalently, need to be away from singularities (will discuss this now)



ECE 4560 Jacobians - Singularity Analysis Lecture 17

Definition: Singularities

A singular configuration or singularity is a joint configuration of an open-chain manipu-
lator in which the end-effector instantaneously loses a degree of freedom of its motion capa-
bility versus the number of degrees of freedom that normally prevail (i.e., the end-effector
loses its ability to move in one or more directions).

Note here that open-chain means that joint-link-joint... combinations do not form a loop.

Practical implications of singularities:

* manipulator loses effectiveness

* high joint velocities may be needed near a singular configuration in order to track a specified
trajectory

* the manipulator can have high mechanical advantage in a singular configuration. (bench
pressing in a gym as your arm is fully extended)

Finding singular configurations:

To find singularities, we can examine the manipulator Jacobian:

1. Numerical Approach
&= J(0)d
Test the rank of J (the number of linearly independent columns)
2. For kinematically sufficient arms,
det(J(A)) =0
at a singular configuration.

3. For redundant arms (n < m), J(6).J" () has the same rank as .J(f) but is square. That
means a perfectly valid test is:

det(J(0)JT(8)) =0
for singular configurations.

4. For kinematically insufficient arms (n > m), J'(0)J(6) has the same rank as .J() but is
square. Thus, a test for singular configurations is det(.J " .J) = 0.



ECE 4560 Jacobians - Singularity Analysis Lecture 17

Note, that for condition 4, the old notes says that there is an “issue” with this point, because one
should not really even have this case in practice. If an arm is insufficient, it is best to get a new
arm or modify the task to be sufficient. Also, the product J'.J has nonsense units if dimensional
analysis is performed.

To find the singular configurations means applying one of the given tests for all 6 in the joint space
and keeping track of the singular ones.

There is connection between loss of rank in the Jacobian, and loss of control.

There are usually two occasions when a singularity occurs:

1. Workspace - bounded singularities

* when manipulator is fully extended or folded back on itself in such a way that the
end-effector is at, or near, the workspace boundary

2. Workspace - interior singularities

* occur away from workspace boundary, generally caused by a lining up of two or more
axes.

Example 1

Consider the following manipulator:

This manipulator has the forward kinematics (using product of Lie groups):

ge(@) = gi(a1)g2(az)gs(as)

with



ECE 4560 Jacobians - Singularity Analysis Lecture 17

Once multiplied, this gives us:

R(a) [al + a3 COS(O@)]

ag sin(ap)
0 1

ge(ar) =

To analyze the singularities, we will compute the body manipulator Jacobian. But it should be
noted that the definition of a singularity is independent of choice of body or space Jacobian.

To compute body manipulator Jacobian, we will use the formula:

Jt=[Ad,)} Jb AdJY Jb]

9293
with
g\ "
Jb= g1 22
- (i)
Computing each body Jacobian gives us:
1 9% Y
Iy () = (91 18741)

\
I_Oél O]_ 0]_V 1
— 0 0 :00:0

0 1 0 O 0

2
[+ 0 —sin(ag) —cos(az) 0]
_ | B () [0] cos(ag) —sin(az) 0
o0 1 0 0 0
r \%
— cos(az) sin in{as) cos(az) — cos(ay)? — sin(ay)? 0 0
B sin(ag)? 4 cos(ag)? sin(a) cos s(az) sin(ap) 0] L
0
i 0 0 0
[0
= |0
1




ECE 4560 Jacobians - Singularity Analysis Lecture 17

1093\
J:l;: (gslaﬁ.;)

f-[EN b

0
1
0l =
0

o O O
o O O
S O =

o O O
OO =

Next, accounting for the adjoints:

Adg‘;ggjf = (9293) "I} (9293)
= g5 95 " J 9293

] e [0 0 [ (][ (2]
0 0 0

0 1 0 1 0 1 0 1
RT(OQ) 0
0 1
0 0 cos(az)
0 0 —sin(ag)
0 0 0
0 0 cos(as)
0 0 —sin(ay)
0 0 0
0 0 cos(az)
0 0 —sin(a)
0 0 0
cos(ag)
= | —sin(ay)
0



ECE 4560 Jacobians - Singularity Analysis Lecture 17

Ad TS = g5 Tgs

[as 0 -1 0 as
_|! {0} 1 0 0 I{o}
0 1 0 0 0|0 1
[0 —1 0] [1 0 oy
=11t 0 ol]|o1 0
0 0 0|00 1
0 -1 071" 0
= |1 0 (0% = | Q3
0 0 0 1

1(;2 [d]quz R]

As mentioned last week, a shortcut for this adjoint computation is Ad, = [

Putting everything together gives us:

Note that an equivalent way to obtain this jacobian would have been:

Jb = |Ad

—1 -1
€101 -..363939051 Ad65292 ~--e‘53‘9390£2 Ad€§39390§3

with

1 0 1
=10, &=|0], &=10
0 1 0



ECE 4560 Jacobians - Singularity Analysis Lecture 17

Example MATLAB Code

I % Helper functions
2 twist = @(w, p) [cross(-w,p); w];

skew = @(w) [0 —w(3) w(2); w(3) 0 —w(l); —-w(2) w(l) 0];
4 unskew = @ (skw) [skw(3,2);skw(l,3);skw(2,1)];
5 hat = @(twist) [skew(twist(4:6)), twist(l1:3); 0 0 0 0];
6 vee = @ (htwist) [htwist (1:3,4); unskew(htwist (1:3,1:3))1;
7 Rz = @ (theta) [cos(theta) -sin(theta) O0;
8 sin(theta) cos(theta) 0; 0 0 17;
9 Rx = Q@(theta) [1 0 0; O cos(theta) -sin(theta);
10 0 sin(theta) cos(theta)l];
11
12 % Symbolic variables
13 syms al a2 a3
14
15 % Specify exponential mapping twists for zero configuration
16 twistl = [1; O; 0; 0; 0; 0];
17 twist2 = [0; O; 0; 0; 0; 1];
18 twist3 = [1; O0; 0; 0; 0; 0];
19 g0 = [eye(3), [0;0;0]; O 0 0 17];

21 $Compute body twists using method of adjoints

22 twistbl = vee (inv (expm (hat (twistl) xal) xexpm (hat (twist2) xa2) *
23 expm (hat (twist3) xa3) xg0) =

24 hat (twistl) *

25 expm (hat (twistl) xal) xexpm (hat (twist2) xa2)

26 expm (hat (twist3) *xa3) xg0)

27 twistb2 vee (inv (expm (hat (twist2) xa2) rexpm (hat (twist3) xa3) xg0) *
28 hat (twist2) *

29 expm (hat (twist2) xa2) rexpm (hat (twist3) xa3) xg0)

30 twistb3 vee (inv (expm (hat (twist3) xa3) xg0) *

31 hat (twist3) xexpm (hat (twist3) xa3) xg0)

33 % Simplify body manipulator jacobian
34 J = simplify ([twistbl, twistb2, twistb3])

We are going to evaluate the body manipulator Jacobian for two cases:

Case1: o = (1,7/2,1)"

01
Jla)=|-1 10
10

Matrix has full rank (number of linearly independent columns = 3). Thus, we have full (local)
control.



ECE 4560 Jacobians - Singularity Analysis Lecture 17

Case2: o = (1,0,1)"

101
JPa)=10 1 0
010

Matrix is not full rank (lost control of the system locally).

General case: a = (1,a2,1)"

cos(ag) 0 1
J’(a) = | —sin(ag) 1 0
0 10

The matrix loses rank for a; = {0, 7, - - - 2k }. We can also look at the determinant, det(.J%(a)) =
— sin(a), which approaches 0 as we approach the singularities.

Example 2

Now lets consider a slightly different example:

In this example, our homogeneous transformation matrices are:

gi(ay) = | RloD) {31 o) = | F(@) [ZO] ooy = | W
0 1 0 1 0 1

Putting these together, the forward kinematics is given by:

ge(@) = gi(a1)g2(aa)gs(as)

l1 cos(aq) + Iz cos(ay + aw)
= R(al + OQ) |:l1 sin(oq) + l2 SiIl(Oél + 062)
0 1



ECE 4560 Jacobians - Singularity Analysis Lecture 17

This is a kinematically insufficient arm (m < n, 2 < 3). This means that we can’t expect total
control. One solution is to only consider the outputs being = and y coordinates. This reduces the
forward kinematics to:

(a) = Iy cos(ay) + Iy cos(ay + a)
Pe\) = [y sin(a) + la sin(ag + ag)

Since we deal with p.(«) only and not g.(«), there is no orientation to worry about, therefore, the
standard Jacobian will be sufficient for our singularity analysis:

Jpos() = Ope(a) _ [—ll sin(on) — lasin(a; + )  —lysin(ag + 042)}

O l1 cos(aq) + lacos(ay + an) Iy cos(ag + az)

Lets consider the following two cases:
Case 1: o = (ay,0)"

—(ly + o) sin(ay) —lysin(ay)
(I +13) cos(ag)  —lycos(ay)

J(a) =

This gives two parallel translation vectors. J(c,0) does not have full rank (this is a singularity).
Case2: a = (ay,7/2)"

J(a) = —lysin(ay) — Iy cos(ay)  —lysin(ay)
Y= cos(ay) — lpsin(ay) Iy cos(ay)

This gives two non-parallel translation vectors. so J(«aq, 7/2) has full rank (no singularity).
Note: the simplification of J(«) above comes from the identities:

sin(ay + ay) = sin(ay) cos(ay) + cos(ay ) sin(az)

cos(a + an) = cos(a) cos(ag) — sin(aq) sin(asz)



