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Introduction to Jacobians

The Jacobian is used in the context of robotics to relate end-effector velocity to joint velocity as a
function of joint variables.

Definition: Jacobian

Assume we have a manipulator with coordinates x € R™, velocity & = dx/dt € R™, and
joint variables 6 € R"™. The forward kinematics can be written as:

Using the chain rule, the time derivative at time ¢ is:

d
b(t) = —f(O(t
(t) = - 1(01))
_ofds
00 dt
= J(0)8
Here, J(¢)) € R™*" is the Jacobian. This Jacobian matrix represents the linear sensitivity

of the end-effector velocity & to the joint velocity € as a function of the joint variables 6.
Explicitly, the Jacobian is:
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for@ = [01,...,0,]" and £(0) = [f1(0), ..., fn(0)] .
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Example

Consider the following example:

The explicit forward kinematics is defined as:

x1 = Ly cos(by) + Lo cos(6y + 02)
= L1 sin(@l) + L2 sin(01 -+ 92)

Differentiating both sides yields:

r1 = —L1 sin(01)91 — L2 SiIl(Hl + 92)(91 + 92)
Ty = Iy cos(@l)él + Lo cos(6y + 92)(91 + 92)

Rearranging this to math the form & = J(0)6, we get:

.’i’l —L1 Sll’l(el) L2 Sin(91 -+ 02) _L2 Sin(91 + 92) (9:1

j?g L1 008(91) =+ LQ 008(91 =+ 02) LQ 008(91 =+ 02) 92
|
(
|

- | s ]

[\ S/
-~

J(0)

Therefore, the velocity of the end-effector canbe written in terms of the Jacobian and the joint
velocities:

Utip = J1(9)91 -+ J2(9)92

We can also see that we would have obtained the same thing by directly computing the Jacobian
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of the forward kinematics map: D f(6):

of1(0)  9f1(6)
Df(0) = J(0) := a?fe) a?fe)
96, 905

_ —L1 SiIl<91> — LQ sin(@l -+ 92) —L2 Sil’l(@l + 92)
| Lycos(01) + Lacos(0; + 605)  Lycos(6; + 65)

=[N 7]

One special aspect of the Jacobian is that it becomes a singular matrix when J;(0) and J5(0) be-
come collinear (i.e., the two columns are linearly dependent, causing the Jacobian to lose rank).
Thus, we can make conclusions about the singularities of the manipulator by looking at the Jaco-
bian. These singularities are the configurations where the robot tip is unable to generate velocities
in certain directions.

The Jacobian also relates to joint torque through the equation (we will discuss this further in Lec-
ture 22):

T T4
f tipvtip =70
which can be transformed into the expression:

T= JT(Q)ftip
fip=J HO)T

This notion of a Jacobian is a generic definition available in the literature. When applied to a
manipulator, since this Jacobian is often used to express the relationship between the end-effector
coordinates and the joint configuration, it is sometimes called the coordinate Jacobian.

The Manipulator Jacobian

The Manipulator Jacobian specifically relates a six-dimensional twist £ to the joint velocities.
There are two standard Manipulator Jacobians, the Spatial Manipulator Jacobian and the Body
Manipulator Jacobian. Each column of the spatial Jacobian corresponds to a screw axis expressed
in the fixed frame with the screw axes depending on the joint variables 6. Each column of the body
Jacobian corresponds to a screw axis expressed in the end-effector body frame. Note that before,
for forward kinematics, our screw axes were always for the case § = 0.

We will derive how to express it with either the Product of Lie Groups or the Product of Exponen-
tials.
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We will derive these expressions over the next few lectures. But in short, we have two
different manipulator Jacobians of interest: the Spatial Jacobian which maps joint velocity
0 to the end-effectors spatial twist £°, and the Body Jacobian which maps joint velocity 0 to
the end-effectors body twist £. These are the same twists as defined in Lectures 6 and 7.

For the following expressions, recall that the rwist (sometimes called Lie-algebra element,
sometimes called the screw) has the form:

—Wi X g,

(

if revolute
Wy

\

U; o .
l] if prismatic

The physical meaning here for &; is that it describes the twist of the " joint in terms of
the fixed frame with the robot in its zero position (i.e., ¢; = p;(0)). Sometimes this is also
referred to as the screw-axis describing the " joint.

The spatial manipulator Jacobian J*(0) € R®*™ associated with § € R" is defined as:
€ = J*(0)0
=& & - &)é
() ()]s
- |

&1 Adeélelfz Adeélel...eénﬂenﬂfn]é

Here, &/ to denote the twist evaluated at the current configuration of the robot, not the zero
configuration (i.e., ¢; = p;(0)).

The body manipulator Jacobian, J°(0) € RS*" is defined as:

£ = J*0)6
= [51 &g - &) 0 (tis \dagger)
— (o) o (a2) ]9
:[Aigﬁm&%%& - awwﬁﬂ

Here, fj are the joint twists written with respect to the tool frame at the current configuration.

These Jacobians are related by the equation:

J*(0) = Ady, (6)7°(0)
Note: The spatial velocity will be particularly useful for inverse kinematics. For example, you can

4
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compute the joint velocities required to achieve a desired end-effector velocity if J° is invertible
using the expression:

0=J°(0)"'¢

where &° is computed as the “unhatted” version of the homogenous twist 55, which can be com-
puted using the expression &% = gg~ 1.

Similarly, if we want to compute the linear velocity of the end-effector, we can use the formula:
.8 s A\ s
P = (J (9)9) p
AN
b= (1)) o

with p® being a point attached to the frame of the end-effector, relative to the base frame, and p°
being a point attached to the frame of the end-effector, relative to the end-effector frame.

Lastly, we can still relate torques to the end-effector forces using the equation:

T = ‘]ST(0>ftLi§p = ‘]bT(e)ftli)p

Example Revisted

So let’s revisit the previous example. Let’s assume that we want to solve for the spatial jacobian
J?:

One way we introduced of solving for the spatial manipulator Jacobian was through the expression:

=l &l

where ¢! indicates the twist evaluated at the current configuration of the robot, not the zero config-
uration as before. To do this, we will still use our formula for twists:

«= ()

In our manipulator, both joint axes are aligned with the z-axis:

0 0
w1 = 0 Wo = 0
1 1

The points on the axes (as a function of the joint variables at the current configuration and not the
zero configuration) are:

0 L cos(6y)
¢1= |0 q2 = | Ly sin(6y)
0 0
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Then, the twists are:

[ L1 sin(@l) i
—L; cos(b,)

& =

_ o O O o o

AN
N~
|

— o oo

Therefore, the spatial manipulator Jacobian is:
J0) =[& &)
_0 L1 Sin(01)

0 —Ljcos(bh)
0 0

0 0
0 0
1 1

Note that we would get the same result by using either

T =& Ad g, &

Vv Vv
s __ 0 e —1 o) e ,—1
J - |:(6gl ge ) (832 ge ) i|

Lastly, as a check, we can compute the linear velocity of the end-effector using the formula:

(] ]

where ¢° is the linear velocity of point ¢ in the fixed spatial frame (g°).

or

Ly
In our example, the point of our end-effector is p = gog1 | 0
0
Finally, we can solve for the linear velocity at the end-effector as:
_O L1 Siﬂ(&l) i "
0 —Lycos(f1)|
D 0 0 th p
of | o 0 0, 1
0 0
_1 1 -

-Ll sin(@l)ég + L1 sin(@l') — L2 Sin(91 —+ 92)(91 —+ 92)
Ly cos(61) — Ly cos(01)0s + Ly cos(0; + 02)(01 + 02)
0
0




ECE 4560 Manipulator Jacobian 1 Lecture 15

While this expression is slightly different, it will give you the same result as before!

Example 2

Consider the following manipulator:

Lets first calculate the forward-kinematics using the product of exponentials (just for practice and
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comparison purposes):

0 0 0
— x |0 0
—w1 X 1 1] lo 0
= { wi 1 B [0 0
0 0
- _1 . _1_.
[ [—1 0]7 [0]
— 10| x]0 lo
—Wwy X (o 0 lo 0
S2= { wy } B 1 1
0 0
- 0 - _0_

(v; 1s a unit vector pointing along the translational axis)

oS
w
Il
Le—
S
—_
|
coocor o

0 0 1, + 03]
— 10| x ll + 93 0
£ = —wy X qa| _ 1 lo 0
: Wy 0 0
0 0
- 1 - - 1 -
[ [—1 0 17 0 ]
— 0 X ll + 93 —lo
5 _ —ws X (@5 _ 0 l() ll+03
> Ws 1 -1
0 0
- 0 - L O -
[0 0 1 [—i]
— 1] x ll + (93 0
5 _ —Wwg X (g _ 0 lo 0
6 W 0 0
1 1
= O = -~ 0 =
Lastly, our g is:
0
I |l1+06;
go = l
0
0 1
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Thus, our forward kinematics are:

Ge = ESLI 656‘9690 (1)

Now, let’s compute the spatial manipulator Jacobian for this manipulator using the formula:
r=lb & & & & &

For the first two joint axes, the point along the axes does not change with joint angles (i.e., ¢; =
[0,0,1] ). However, w, will now be:

-1 — cos(fy)
wy=R.(01) | 0 | = |—sin(by)
0 0
Also, the prismatic joint will be:
e
0 6_122
vy = R.(01)Ra(—02) |0 = | "
0 0
- O =
Next, the wrist location (¢.,) will be:
0 0 —(ll + 93)8102
q;) =10 + RZ(Gl)Rx(—Gg) ll + 93 = (ll + 93)6162
lo 0 lo — (ll + 93)82

Lastly, the final three joint axes will be:

0 —S1S2
WLZRZ(Ql)RI(—HQ) O = C152

—81C4 — C1C254
59254

—C1C4 + S1C254
we = R,(01)R.(—62)R.(6

—c5(s109¢4 + ¢184) + S15285

0
UJ6 R ((91)R ( HQ)R (94)R ( 95) 1| = —05(010204 - 8184) — C152S85
0

—82C4C5 — C255

All of these updated parameters would then be plugged into the following formula for the complete
spatial manipulator Jacobian:

/ / / / / / / /
0 —wh X qr vy —wyX(q, —W5Xq, —WsXq,

J? =
- / / / /
w1 Wy 0 Wy W Wg



