ECE 4560 Kinematics - Inverse Kinematics 2

Lecture 14
Topics Covered: h
* Review of Geometric Approach
e Numerical Approach to Inverse Kinematics
* Optimization-based Techniques
Additional Reading:
* MLS Chapter 3, Section 3; LP 6.2
- /)

Review of Geometric Approach

For lab next week you will be asked to implement inverse kinematics for the SO-101 robot arms.
The kinematic structure of these arms is shown below:

-

o
<]
2
@

0.11257

D
no

-0.0542

SN

2
#7.0.0303992
/1[) 0,

0.0624

l/‘
0.0388353

World Frame

Note that this procedure becomes much simpler if we assume that the last two axes of rotation
intersect at a common point (i.e. similar to a spherical wrist). Then, we can break the inverse

kinematics problem into two parts: positioning the wrist center (center of joint 4) using 61, 65, and
63, and orienting the end-effector using 6, and 6.

1

ECE 4560 Kinematics - Inverse Kinematics 2 Lecture 14

Note that we can also exactly solve for 6, and 65 if we assume that the desired orientation is
strictly about the z-axis of the world frame. This is a reasonable assumption for pick-and-place
tasks where the end-effector is always pointing downwards.

However, if we don’t want to make this assumption, we could use the numerical appraoach de-
scribed next with the initial guess provided from our simplified geometric approach.

Numerical Approach

Analytic solutions often rely on simplifying assumptions (such as intersecting joint axes) which
are not always valid. In these cases, the analytic inverse kinematic solutions can be used as initial
guesses to an iterative numerical procedure.

These iterative approaches are often based on “root finding” methods, where the goal is to find the
“roots” of a nonlinear function:
x* st g(x”)

In the context of inverse kinematics, our function will be defined as g(0) = z4 — f(0), where x4
is the desired end-effector pose and f(f) is the forward kinematics function. Then, the inverse
kinematics problem becomes finding 6, such that g(6,) = 0.

Newton-Raphson Method

The Newton-Raphson method is a fundamental approach to nonlinear root-finding. It solves some
equation g(#) = 0 numerically by iteratively updating some guess 6, + 1 using the formula:

ba =t (L)) ot00

where 0, € R" is the estimate of the input at iteration k. This formula comes from the first-order
Taylor expansion of g(6) around 6y:
dg
9(0) = 9(0k) + 75 (0:)(0 = Or)
and setting g(#) = 0. The iterations are repeated until some stopping criterion is met. This
criterion is typically defined as a small change in 6 between iterations, or a small change in g(6),

Le. [9(0k) = 9(Ors1)|/19(0k)] < e.

We can apply the Newton-Raphson method to inverse kinematics by defining ¢g(6;) = x4 — f(6)
and letting 6, be some initial guess. Notably, in this expression, we see the Jacobian appear:

ECE 4560 Kinematics - Inverse Kinematics 2 Lecture 14

J(6o)
where J(0y) € R™*" is the (coordinate) Jacobian evaluated at 6.

By rearranging this expression, we can directly write our update rule as:

30 = J%(60)(xa — f(60))
with .JT being the pseudoinverse, which we will also cover more in depth later in the course.

Overall, we can see the effect of 6, by considering the following example:

zq — f(0) A

Boa = F(E0) = \slope = —55(6°)

7 pmy e =
]

A = (%(90))71(3:(1 - £(6%)

If 6, is chosen to be close to the solution, then eventually 6, will converge to ;. However, if 6,
is chosen to the left of the plateau of z; — f(#), then it will likely converge to the other root of

zq — f(0).

How does Newton-Raphson work Graphically?

So how do we implement the Newton-Raphson method visually? Let’s consider the same example:

ECE 4560 Kinematics - Inverse Kinematics 2 Lecture 14

As shown, the gradient step is the same as following the tangent line of the curve (evaluated at the
point g(fy)) to the point where it intersects the x-axis. This intuition comes from the following
derivation:

dg(61) _ g(02) — g(61)
00 0y — 0,

Since we’re trying to find the point where g(6,) ~ 0, we can take this to be zero. We will also
replace 0, — 6; with A6:

99(01) _ O(xa—f(9)) —0f 0—(za—f(0h))

00 00 06, A6
of _xa— f(6h)
00, A6

A0 = (%) (va — 1(61))

So this gradient step is the same thing as following the tangent line to the point where it intersects
the x-axis.

Modern Optimization Techinques

Optimization-based techinques are advantageous in situations where an exact solution may not
exist, or if infinite solutions exist (as is the case for redundant manipulators).

Most modern optimization solvers use some technique similar to Newton-Raphson. However,
they often include additional features which allow for the addition of objective functions and con-
straints. But in all cases, good initial guesses are crucial for the success of the algorithm.

ECE 4560 Kinematics - Inverse Kinematics 2 Lecture 14

Typically, the optimization problem is set up as:
mein f(0)
s.t. ¢(f)=0

which can be coded in python as:

import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize as opt

def objective(theta):
return f (theta)

def constraint (theta):
return c(theta)

Example function to minimize
def f(theta):
return (theta - 3) *x 2 + 4

Example constraint function
def c(theta):
return theta - 2

Initial guess
thetaO0 = 0.5

Perform the optimization
result =
opt.minimize (objective, thetal, constraints={’"type’: 'eq’, ’'fun’: constraint})

Print the result
print ("Optimal theta:", result.x)
print ("Objective function value at optimal theta:", result.fun)

or in MATLAB as:

% Initial guess
theta0 = 0.5;

% Perform the optimization
[result, fval] = fmincon (@objective, thetaO, [], [1, T[], [1, []1, [], @constraint);
% Print the result
fprintf (' Optimal theta: %$f\n’, result);
fprintf (‘Objective function value at optimal theta: $f\n’, fval);
% Define the objective function
function val = objective (theta)
val = f (theta);

ECE 4560 Kinematics - Inverse Kinematics 2 Lecture 14

end

% Define the constraint function

function [c, ceqg] = constraint (theta)
c = []; % No inequality constraints
ceq = theta - 2; % Equality constraint
end

[

% Example function to minimize
function val = f (theta)

val = (theta - 3) ~ 2 + 4;
end

