
ECE 4560 Forward Kinematics Lecture 12

Topics Covered:

• Product of Exponentials

• Denavit Hartenberg Parameters

Additional Reading:

• LP 4.1; MLS Chapter 3, Section 2.2;

Review

Consider the following manipulator:

We’ve already learned how to use the product of homogeneous transformation matrices (also
known as the Product of Lie Groups) to derive the forward kinematics gE = g01g12g23g34g4E .
Specifically, we obtained the displacements:

d01 =


0
0
l0

 , d12 =


0
0
0

 , d23 =


0
l1
0

 , d34 =


0
l2
0

 , d4E =


0
0
−l3


and the rotations:
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R01 → rotation about z-axis R12 → rotation about x-axis

R01 =

cos(θ1) − sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1

 R12 =

1 0 0
0 cos(θ2) − sin(θ2)
0 sin(θ2) cos(θ2)


R23 =

1 0 0
0 cos(θ3) − sin(θ3)
0 sin(θ3) cos(θ3)

 R34 =

1 0 0
0 cos(θ4) − sin(θ4)
0 sin(θ4) cos(θ4)


R4E = I

This class, we will discuss two alternative methods: the product of exponentials and Denavit-
Hartenberg parameters. These methods are more commonly used in practice.

Product of Exponentials

The product of exponentials uses the formula:

ge = eξ1θ1 · · · eξnθng0.

Note here that if θ⃗ = 0, then e0 = I , and thus ge(0) = g0. Therefore, g0 encodes the displace-
ment that occurs at the ”zero configuration”, and is known as the reference configuration for the
manipulator.

A given ξi will then say how the reference configuration changes for a given θi,

ge(0, · · · , θi, · · · , 0) = eξiθig0

This can be visualized as:

What are the ξi? There are three basic types corresponding to the 3 single degree of freedom
lower-pair joints:
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1) revolute: ξi =

{
−ωi × qi

ωi

}
ωi - unit vector aligned w/ rotation axis

qi - point on the axis

2) prismatic: ξi =

{
vi
0

}
vi - unit vector aligned w/ translation axis

3) helical/screw: ξi =

{
hωi + [qi]×ωi

ωi

}
h - pitch of helical motion

These ξi ∈ se(3) represent twists in spatial coordinates. Note here that −ωi×qi = qi×ωi = [qi]×ωi.

Based on seeing how end-effector changes for each joint from base to end-effector frame, can
combine for all i to get total effect:

ge = eξ1θ1 · · · eξnθn︸ ︷︷ ︸
order matters!

g0

Order here matters! The (ξi, θi) must enumerate from base to tool frame.

Note: Matrix Exponentials do not communite (unless the actual matrices commute, i.e. AB =
BA), this is why order matters for the Product of Exponentials:

eAeB ̸= eBeA

Note about Computing Matrix Exponential by Hand

Remember, we can compute the matrix exponentials by hand using our previous formulas.

exp(ξ̂θ) =

[
e[ω]×θ (I − eω̂θ)[ω]×v̂ + ωωTvθ
0 1

]
where exp([ω]×θ) is computed using Rodrigues’ formula (and assuming ∥ω∥ = 1):

e[ω]×θ = I + sin(θ)[ω]× + (1− cos(θ))[ω]2×

However, as we saw with our computation of twists, this formula can be simplified if we know that
our associated joint is a revolute joint. In this case, our exponential map simplifies to:

eξ̂θ =

[
e[ω]×θ (I − e[ω]×θ)q
0 1

]
where q is the position vector from the origin to any point on the rotation axis associated with ω.
And again, exp([ω]×θ) is computed using Rodrigues’ formula. Alternatively, if the rotation axis is
about a principle axis, this expression can be obtained using our traditional rotation matrices.

If the joint is prismatic, the exponential map simplifies to:

exp(ξ̂θ) =

[
I vθ
0 1

]
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Example

Let’s consider the example from before. For clarity, let’s redraw the zero configuration:

With this zero configuration, the reference configuration is:

ge(0) = g0 =

I


0
l1 + l2
l0 − l3


0 1


Next, we need to find each twist ξi that we will plug into the expression:

ge(θ) = eξ̂1θ1 · · · eξ̂4θ4g0

What are the ξi?
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ξ1: (rotation axis) ω1 =


0
0
1

, (point on axis) q1 =


0
0
l0

 ξ1 =

{
q1 × ω1

ω1

}
=



0
0
0
0
0
1



ξ2: ω2 =


1
0
0

, q2 =


0
0
l0

, q2 × ω2 =


0
l0
0

 ξ2 =



0
l0
0
1
0
0



ξ3: ω3 =


1
0
0

, q3 =


0
l1
l0

, q3 × ω3 =


0
l0
−l1

 ξ3 =



0
l0
−l1
1
0
0



ξ4: ω4 =


1
0
0

, q4 =


0

l1 + l2
l0

, q4 × ω4 =


0
l0

−l1 − l2

 ξ4 =



0
l0

−l1 − l2
1
0
0


Then, to actually compute each matrix exponential, we could use our expressions for eξ̂iθi:

eξ̂iθi =

[
exp([ω]× τ) (I − exp([ω]×τ))

[ω]× v
∥ω∥2 + ωω⊤

∥ω∥2vτ

0 1

]

and exp([ω]×τ) obtained using Rodrigues’ formula:

exp([ω]×τ) = I +
[ω]×
∥ω∥

sin(∥ω∥τ) +
[ω]2×

∥ω∥2
(1− cos(∥ω∥τ))

OR, if you have access to a computer, you can simply use the matrix exponential function in
MATLAB (expm()) or Python (scipy.linalg.expm()) to compute these. This method is
much simpler in practice and only requires you to compute the homogeneous form of ξ (i.e., ξ̂) as:

ξ̂ =

[
[ω]× v
0 0

]
with v calculated using the previous formulas. For our example, each of the homogeneous twists
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are:

ξ̂1 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , ξ̂2 =


0 0 0 0
0 0 −1 l0
0 1 0 0
0 0 0 0

 ,

ξ̂3 =


0 0 0 0
0 0 −1 l0
0 1 0 −l1
0 0 0 0

 , ξ̂4 =


0 0 0 0
0 0 −1 l0
0 1 0 −l1 − l2
0 0 0 0


The benefit of the Product of Exponentials is that it is more general than the Product of Lie Groups
and can more easily handle any arbitrary axis of rotation for the joint axes.

We can verify that it produces the same results by comparing to the product of Lie Groups:

ge(θ) = eξ̂1θ1 · · · eξ̂4θ4g0

eξ̂1θ1 =


cos(θ1) − sin(θ1) 0 0
sin(θ1) cos(θ1) 0 0

0 0 1 0
0 0 0 1



eξ̂2θ2 =


1 0 0 0
0 cos(θ2) − sin(θ2) l0 sin(θ2)
0 sin(θ2) cos(θ2) l0(1− cos(θ1))
0 0 0 1



eξ̂3θ3 =


1 0 0 0
0 cos(θ3) − sin(θ3) l0 sin(θ3) + l1(1− cos(θ3))
0 sin(θ3) cos(θ3) l0(1− cos(θ3))− l1(sin(θ3))
0 0 0 1



eξ̂4θ4 =


1 0 0 0
0 cos(θ4) − sin(θ4) l0 sin(θ4) + (l1 + l2)(1− cos(θ4))
0 sin(θ4) cos(θ4) l0(1− cos(θ4))− (l1 + l2) sin(θ4)
0 0 0 1


Multiplying this all out should give us the same solution as before. Note: your homework will be
to implement this example.

Denavit-Hartenberg Parameters

Lastly, the Denavit-Hartenberg parameters are a systematic way to describe the geometry of a
manipulator. This method begins by assigning a specific frame of reference to each joint:
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• the x-axis is parallel to the common normal (the line perpendicular to two non-intersecting
joint axes)

• the z-axis is in the direction of the joint axis

• the y-axis follows from the x- and z-axes by choosing it to be a right-handed coordinate
system

Using these reference frames, the method then assigns the following four parameters to each joint:

• ai - distance from zi−1 to zi along xi axis

• αi - angle from zi−1 to zi about xi axis

• di - distance from xi−1 to xi along zi−1 axis

• θi - angle from xi−1 to xi about zi−1 axis

For example, the diagram given by wikipedia is:

For our example, the parameters are as follows:

Link ai αi di θi
1 0 0 l0 θ1
2 l1 π/2 0 θ2
3 l2 0 0 θ3
4 l3 0 0 θ4 − π/2
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Once these parameters are assigned, the transformation matrix from frame i− 1 to frame i can be
written as:

Ai = Rz(θi)Tz(di)Tx(ai)Rx(αi)

=


cos(θi) − sin(θi) cos(αi) sin(θi) cos(αi) ai cos(θi)
sin(θi) cos(θi) cos(αi) − cos(θi) cos(αi) ai sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1


The forward kinematics can then be found by multiplying these matrices together:

gE = A1A2A3A4

Thus, the Denavit-Hartenberg parameters for the previously presented manipulator (with the frames
configured as shown below) are:

Table 1: Denavit–Hartenberg parameters for
the example manipulator

Link ai αi di θi
1 0 π/2 l0 θ1 + π/2
2 l1 0 0 θ2
3 l2 0 0 θ3 − π/2
4 l3 0 0 θ4

where in every frame you:

1. Rotate about zi−1 by θi

2. Translate along zi−1 by di

3. Translate along xi by ai

4. Rotate about xi by αi

Note that there is also a modified version of the Denavit-Hartenberg parameters that switches
the order of the translations and rotations. This is known as the Craig convention, and uses the
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following transformation matrix:

Ai = Rx(αi−1)Tx(ai−1)Rz(θi)Tz(di)

=


cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) −di sin(αi−1)
sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) di cos(αi−1)

0 0 0 1


Here in every frame you now:

1. Rotate about xi−1 by αi−1

2. Translate along xi−1 by ai−1

3. Rotate about zi by θi

4. Translate along zi by di

The DH parameters for our example using the Craig convention are shown in the table below (with
the associated frames):

Table 2: Denavit–Hartenberg parameters for
the example manipulator

Link ai−1 αi−1 di θi
0 0 0 l0 π/2
1 0 π/2 0 θ1
2 l1 0 0 θ2
3 l2 0 0 θ3
4 l3 0 0 θ4 − π/2

You can verify that this produces the same result as before. There are several convenient visualizers
for DH parameters online, such as this one.
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