ECE 4560 Introduction to Manipulators and Manipulator Kinematics Lecture 11
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Topics Covered:
* Joints
» Workspace Description
* Forward Kinematics

Additional Reading:

g * Craig 3.6 & 3.7, LP 2.2 & 2.3, MLS Chapter 3, Section 2 y

Manipulators & Manipulator Analysis In “Introduction to Robotics”, Craig provides a nice
visualization that illustrates the mappings between kinematic descriptions:
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This diagram illustrates the three representations of a manipulator’s position and orientation: de-
scriptions in actuator space, joint space, and Cartesian space. Importantly, forward mappings can
be constructed to map from actuator space to joint space, as well as from joint space to configura-
tion space. Alternatively, inverse mappings are constructed to then map the reverse.

So far in this course, we have been working mostly with configuration space, with some forward
kinematics. We will now delve deeper into different methods of forward kinematics, as well as
then discussing inverse kinematics. Lastly, we will discuss the relationship between actuator and
joint space (which is loosely the field of control).

Joint Space

Joints are traditionally chosen from a set of 6 simpler ones, called lower-pair joints,
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Their simpler nature allows for product of exponentials formula (a method of forward kinematics
which we will discuss next class).

If we consider each joint to have 1 DOF, then the joint space is products of

1. S! (revolute joint has the topology of a 1-dimensional sphere)

2. R (prismatic or helical joints have the topology of a 1-dimensional line)

Here, products of S* gives the torus 7" and products of R gives a p-dimensional Euclidean space:

Tr=8"x... xS
~—_—
r copies
RF=Rx--- xR
————

p copies

Together we can mathematically represent the joint space (also called the manipulator space) as:

M=T"xRP
r : # revolute joints

p : # prismatic/helical joints

Workspace Description
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Definition: Workspace(Complete)

W = {4.(8) € SE(n) | & € M)}

The workspace W denotes the set of all configurations reachable by some joint configu-
ration. It’s usually difficult to interpret or visualize. Thus, an alternative is the reachable
workspace.

Definition: Reachable Workspace

— —

Wgr={p.(0)€EMn)| 6§ €¢ M}

The reachable workspace W is the set of positions reachable by some joint configuration.
It is a volume of F(n) which can be reached at some orientation. Notably, this is not

necessarily a useful measure since orientation is not always controllable.

Definition: Dextrous Workspace

Wp = {p.(0) € E(n) |[VR € SO(n),30 € M s.t. g.(8) = (pe, B)}

The dextrous workspace W is the set of positions reachable with arbitrary orientation.
Within this volume we can do anything. In other words, the end-effector has full rotational
freedom at every point in this workspace.

Typically, to maximize dextrous workspace, industrial manipulators add a spherical wrist to
the end of the manipulator chain. For example, SCARA manipulator adds a cylindrical joint

for full SE(2) C SE(3) control.

Example 1. (Kinematically insufficient manipulator)

l1 cos(6y) + Iy cos(601 + 602)
ge(0) = < lysin(by) + lasin(0y + 02)
01 + 05

Note: dim(M) < dim(G)
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will be a surface in SE(3); does not take up any
W:  volume (system is not fully controllable). Hard
to visualize

WR: (lf 1 % lg) annulus |ll — l2’ <r<l+l1s

(if Iy = I3 = 1) disc of radius 2!

Wp: (if Iy # I3), then you get an empty set ()
(if [y = I, = l1), get origin only

Example 2.

'5
{, B

Be l1 cos(61) + Iy cos(0y + 03) + I3 cos(6; + O + 03)

95(9) = ll sin(@l) + lz sin(@l + 92) + l3 sin(91 + 92 + 93)

@, 91 + 02 + 03
R )
/ dim(M) = dim(G) = should have non-trivial dextrous

workspace
assume: I; > I, > I3
and ll > lg > l3

WRI annulus ll — lg — 13 S r S l1 + lz + 13

WD: annulus ll — lg + l3 S T S ll + lQ — l3

loses 2l3 of inner and
outer radii
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Forward Kinematics

Forward kinematics is the process of mapping from joint space to configuration space. Typically,
this is the process of calculating the configuration of end-effector given joint configuration of the
manipulator.

Definition: Forward Kinematics

The forward kinematics of a manipulator is the configuration of the end-effector given a
joint configuration of the manipulator.

We will discuss this in more detail in the next lecture, but there are many methods of doing this.
All methods are done by concatenating transformations that go from joint-to-joint.

* Homogeneous Transformation Matrices: represents each joint’s transformation (rotation
and/or translation) using homogeneous transformation matrices

Gwe = GwaGab * * * Gne

* Product of Exponentials: uses the exponential of a twist (screw motion) to describe the
movement of each joint

g(0) = et gy

* Denavit-Hartenberg parameters: simplifies the description of the robot’s geometry by intro-
ducing four parameters for each joint

* Geometric Methods: uses basic geometry and trigonometry

< what are the forward kinematics? This is where
benefits of Lie group notation come in.

Using what we have learned so far (Homogeneous Transformation Matrices), we can write the
end-effector configuration as product of Lie-group elements: g = go191292393494. Here, each g;;
goes from one joint to the next across links.



ECE 4560 Introduction to Manipulators and Manipulator Kinematics Lecture 11

* getting displacement is easy

* getting orientation (rotation) is tricky

Recall, SE(3) = E(3) x SO(3) e.g. g = [g"’ ﬂ , with p € E(3) and R € SO(3).

What are the Ry, Ri2, etc.?

Ry, — rotation about z-axis R15 — rotation about x-axis
[cos(6,) —sin(f;) O] 0 0

Ro1 = |sin(fy) cos(61) O Ryp= cos(fz) —sin(6s)
0 0 1 sin(fy)  cos(6s)
1 0 0 | i 0 0
R23 = O COS( 3) - sin(ﬁg) R34 =
sm( 3) cos(fs) |

cCo~ oo -

In the next lecture, we will discuss further the Lie group SO(3) and the representations for SO(3)
and therefore SFE(3).

Meanwhile, what about pg;, p12, etc.?

0 0 0 0 0
Po1=40p2, p2=40p, pa=qlip, pu=qlr, pr=4 0
lo 0 0 0 —l3

Therefore,

9Jr = 90191292393494E

cos(fy) —sin(fy) 0 0O 1 0 0 0 1 0 0 0
sin(f,) cos(¢y) 0 O 0 cos(fz) —sin(h) 0 0 cos(f3) —sin(bs) L
N 0 0 1 0 sin(6y) cos(f2) O 0 sin(f3) cos(f3) O
0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 100 O

0 cos(fy) —sin(fy) Iy 010 O

0 sin(fy) cos(8y) O 001 —I3

0 0 0 1 000 1
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What if we do product in shorthand?

9Jg =

[ Roy

Rox

'Roy

[ Roy

por| [Ria O] [Raz pas| [Ras pas| [Rur pam

1]lo 1o 1]lo 1]]l0o 1

po1| [Riz 0] [Ras pos| [RasRup  Rsupar + paa

1]lo 1)lo 1] o 1

p01_ _R12 0] —R23R34R4E RosR3apap + Rogpsa + pa3
1]lo 1| o 1

po1| [Ri2RasR3sRap  RiaRosR3apar + RiaRospss + Riapas
1 0 1

0

1

[Roy RioRoz R34 Ryp Ro1 R12 Ro3 R3apar + Ro1 R12Ra3pss + Roy Riopas + pm}

Note: try to do this calculation yourself in Mathematica or Matlab. You should arive at:

9E =

cos(61) — sin(01) cos(2 + 03 + 04) sin(01) sin(02 + 03 + 04) —sin(61) (11 cos(02) + L2 cos(02 + 03) + I3 cos(02 + 03 + 64))
sin(61) cos(02 + 03 + 64) — cos(02) sin(02 + 03 + 04) cos(01)(l1 cos(02) + la cos(02 + 03) + L3 cos(02 + 03 + 04))
0 sin(61 + 62 + 03) cos(f2 + 03 + 04) lo + 11 sin(02) 4 lo sin(02 + 63) + l3 sin(02 + 03 + 04)

[ o 0 0 \ I




